实用高三高考数学必背知识点总结样例【精彩4篇】

网友 分享 时间:

【前言导读】此篇优秀范文“实用高三高考数学必背知识点总结样例【精彩4篇】”由阿拉题库网友为您精心整理分享,供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载吧!

高三数学知识点总结【第一篇】

1、等差数列的定义

如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。

2、等差数列的通项公式

若等差数列{an}的首项是a1,公差是d,则其通项公式为an=a1+(n-1)d.

3、等差中项

如果A=(a+b)/2,那么A叫做a与b的等差中项。

4、等差数列的常用性质

(1)通项公式的推广:an=am+(n-m)d(n,m∈N_)。

(2)若{an}为等差数列,且m+n=p+q,

则am+an=ap+aq(m,n,p,q∈N_)。

(3)若{an}是等差数列,公差为d,则ak,ak+m,ak+2m,…(k,m∈N_)是公差为md的等差数列。

(4)数列Sm,S2m-Sm,S3m-S2m,…也是等差数列。

(5)S2n-1=(2n-1)an.

(6)若n为偶数,则S偶-S奇=nd/2;

若n为奇数,则S奇-S偶=a中(中间项)。

注意:

一个推导

利用倒序相加法推导等差数列的前n项和公式:

Sn=a1+a2+a3+…+an,①

Sn=an+an-1+…+a1,②

①+②得:Sn=n(a1+an)/2

两个技巧

已知三个或四个数组成等差数列的一类问题,要善于设元。

(1)若奇数个数成等差数列且和为定值时,可设为…,a-2d,a-d,a,a+d,a+2d,…。

(2)若偶数个数成等差数列且和为定值时,可设为…,a-3d,a-d,a+d,a+3d,…,其余各项再依据等差数列的定义进行对称设元。

四种方法

等差数列的判断方法

(1)定义法:对于n≥2的任意自然数,验证an-an-1为同一常数;

(2)等差中项法:验证2an-1=an+an-2(n≥3,n∈N_)都成立;

(3)通项公式法:验证an=pn+q;

(4)前n项和公式法:验证Sn=An2+Bn.

注:后两种方法只能用来判断是否为等差数列,而不能用来证明等差数列。

高三数学知识点总结【第二篇】

第二部分函数与导数

1、映射:注意①第一个集合中的元素必须有象;②一对一,或多对一。

2、函数值域的求法:①分析法;②配方法;③判别式法;④利用函数单调性;

⑤换元法;⑥利用均值不等式;⑦利用数形结合或几何意义(斜率、距离、绝对值的意义等);⑧利用函数有界性(、、等);⑨导数法

3、复合函数的有关问题

(1)复合函数定义域求法:

①若f(x)的定义域为〔a,b〕,则复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出②若f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域。

(2)复合函数单调性的判定:

①首先将原函数分解为基本函数:内函数与外函数;

②分别研究内、外函数在各自定义域内的单调性;

③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性。

注意:外函数的定义域是内函数的值域。

4、分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。

5、函数的奇偶性

⑴函数的定义域关于原点对称是函数具有奇偶性的必要条件;

⑵是奇函数;

⑶是偶函数;

⑷奇函数在原点有定义,则;

⑸在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性;

(6)若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性;

最新高三高考数学必背知识点总结模板【第三篇】

圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标

圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0

抛物线标准方程y2=2pxy2=-2p__2=2pyx2=-2py

直棱柱侧面积S=c__h斜棱柱侧面积S=c__h

正棱锥侧面积S=1/2c__h正棱台侧面积S=1/2(c+c)h

圆台侧面积S=1/2(c+c)l=pi(R+r)l球的表面积S=4pi__r2

圆柱侧面积S=c__h=2pi__h圆锥侧面积S=1/2__c__l=pi__r__l

弧长公式l=a__ra是圆心角的弧度数r>0扇形面积公式s=1/2__l__r

锥体体积公式V=1/3__S__H圆锥体体积公式V=1/3__pi__r2h

斜棱柱体积V=SL注:其中,S是直截面面积,L是侧棱长

柱体体积公式V=s__h圆柱体V=pi__r2h

最新高三高考数学必背知识点总结模板【第四篇】

第一:高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节。

主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的`一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。

第二:平面向量和三角函数。

重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基本公式。第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。难度比较小。

第三:数列。

数列这个板块,重点考两个方面:一个通项;一个是求和。

第四:空间向量和立体几何。

在里面重点考察两个方面:一个是证明;一个是计算。

第五:概率和统计。

这一板块主要是属于数学应用问题的范畴,当然应该掌握下面几个方面,第一等可能的概率,第二事件,第三是独立事件,还有独立重复事件发生的概率。

35 1263888
");