大学物理实验报告(优质5篇)

网友 分享 时间:

【路引】由阿拉题库网美丽的网友为您整理分享的“大学物理实验报告(优质5篇)”文档资料,以供您学习参考之用,希望这篇范文对您有所帮助,喜欢就复制下载支持吧!

大学物理实验报告【第一篇】

一、实验目的

1、掌握氢氘光谱各谱线系的规律,即计算氢氘里德伯常数RH,RD的方法。

2、掌握获得和测量氢氘光谱的实验方法。

3、学习光栅摄谱仪的运行机理,并学会正确使用。

二、实验仪器及其使用方法

WPS-1自动控制箱,光源:铁电极。电弧发生器,光源:氢氘放电管。中间光阑,哈德曼光阑,摄谱窗口。

平面光栅摄谱仪是以平面衍射光栅作为色散元件的光谱仪器。它的光学系统用Ebert-Fastie装置(垂直对称式装置),其光学系统如图2所示。由光源B(铁电极、氢氘放电管)发射的光,经过消色差的三透镜照明系统L均匀照明狭缝S,再经反射镜P折向球面反射镜M下方的准光镜O1上,经O1反射,以平行光束射到光栅G上,经光栅衍射后,不同方向的单色光束射到球面反射镜的中央窗口暗箱物镜O2处,最后按波长排列聚焦于感光板F上,旋转光栅G,改变光栅的入射角,便可改变拍摄谱线的波段范围和光谱级次。这种装置的入射狭缝S和光谱感光板是垂直平面内对称于光栅G放置的,由于光路结构的对称性,彗差和像散可以矫正到理想的程度,使得在较长谱面范围内,谱线清晰、均匀。同时由于使用球面镜M同时作为准直物镜和摄谱物镜,因此不产生色差,且谱面平直。使用摄谱仪做光谱实验时必须注意以下事项:

(1)摄谱仪为精密仪器,使用时要注意爱护。尤其是狭缝,非经教师允许,不可以随意调节各旋钮,手柄均应轻调慢调,旋到头时不能再继续用力,不要触及仪器的各光学表面;

(2)燃电弧时,注意操作安全。电弧利用高频高压,点燃后不要用手触及仪器外壳;更换电极时要切断高压电,用绝缘性能好的钳子或手套来更换;电弧有强紫外线辐射,使用时要戴防护眼镜;

(3)铁弧电极上不能有氧化物,应经常磨光,呈圆锥形;调节两电极头之间的距离,注意电极头成像不要进入中间光阑。

三、实验原理

巴尔末总结出来的可见光区氢光谱的规律为:

(n=3,4,5……)

式中的B=。此规律可改写为:

式中的为波数,为氢的里德伯常数(109678cm)。

根据玻尔理论或量子力学中的相关理论,可得出对氢及类氢离子的光谱规律为:

其中,和为整数,z为该元素的核电荷数,相应元素的里德伯常数为:

其中,m和e为电子的质量和电荷,c是真空中的光速,h为普朗克常数,M为原子核的质量。显然,随元素的不同R应略有不同,但当认为M→∞时,便可得到里德伯常量为:

这与玻尔原子理论(即电子绕不动的核运动)所推出的R值完全一样。现在公认的

的值为:10973731m,这与理论值完全符合。有了这样精密测定的里德伯常量,又可以反过来计算还没有测定的某些元素的里德伯常数。即:比如应用到氢和氘为:

可见,氢和氘的里德伯常数是有差别的,其结果就是氘的谱线相对于氢的谱线会有微小的位移,叫同位素位移。和是能够直接精确测量的量,测出它们,也就可以计算出氢和氘的里德伯常数。同时还可以计算出氢和氘的原子核质量比。

式中是已知量。注意:波长应为真空中的波长,同一光波,在不同介质中波长是不同的,唯有频率及对应光子的能量是不变的,我们的测量往往是在空气中进行的,所以为精确得到结果时应将空气中的波长转换为真空中的波长。

四、测量内容及数据处理

测量内容

1、拍摄氢氘和铁的光谱。按实验要求,拟好摄谱程序表格,调好光路后,按程序用哈特曼光栏的相应光孔,分别拍下氢氘和铁的光谱。

2、显示谱片。取下底片盒,到暗室进行显影,定影、水洗等处理得到谱片。

3、观察和测量氢氘光谱线的波长。在光谱投影仪上观察谱片上的光谱,区分铁光谱和氢氘光谱,基于在很小的波长范围内可以认为线色散是个常数。如下图所示、用线性内插法就可以算出待测的谱线的波长。在映谱仪上用直尺进行粗测,在阿贝比长仪上进行精确测量计算出氢氘谱线的波长。

4、数据处理。计算出氢氘的里德伯常数,确定其不确定度,给出实验结果表达式。

大学物理实验报告【第二篇】

摘要:简要说明了大学物理实验的重要地位和实验预习的重要性。详细介绍如何做好大学物理实验课程的实验预习,包括预习要求、预习重点、设计性实验的预习、预习报告的内容;并以“拉伸法测量钢丝杨氏模量”这一实验项目为例,具体说明了怎样做好实验预习。

一、大学物理实验的重要地位

大学物理实验是高等理工科院校对学生进行科学实验基本训练的必修基础课程,是本科生接受系统实验方法和实验技能训练的开端。

大学物理实验覆盖面广,具有丰富的实验思想、方法、手段,同时能提供综合性很强的基本实验技能训练,是培养学生科学实验能力、提高科学素质的重要基础。

在培养学生严谨的治学态度、活跃的创新意识、理论联系实际和适应科技发展的综合应用能力等方面,大学物理实验具有其他实践类课程不可替代的作用。

二、大学物理实验的预习要求

与理论课程不同,实验课程的特点是学生在教师的指导下自己动手,独立完成实验任务。所以实验预习尤其重要。上课时教师要检查实验预习情况,评定实验预习成绩。没有预习的学生不能做实验。

实验预习的目的是全面认识和了解所要做的实验项目。因此,要求在预习时应理解实验原理,了解实验仪器和实验方法,明确实验任务,写出简单的预习报告。

(1) 明确实验任务

要明确实验中需要测量哪些物理量,每个待测量又分别需要什么实验仪器和采用什么实验方法来测量。

(2)清楚实验原理

要理解实验基本原理。例如,电位差计精确测量电压实验用到补偿法原理进行定标,应该理解补偿电路的特点,什么是定标,定标的作用以及如何利用补偿电路定标;电位差计测量的主要误差来源,怎样减小误差。

(3)了解实验仪器 要初步了解实验仪器,通过预习知道需要使用哪些仪器,并对仪器的相关知识进行初步学习,特别是仪器的结构功能、操作要领、注意事项等。

(4)了解实验误差

要了解引起实验误差的主要因素有哪些,思考在做实验时应当怎样减小误差。

(5)总结实验预习

尝试归纳总结实验所体现的基本思想,自己在预习过程做了哪些工作,遇到了哪些问题,解决了哪些问题,怎么解决的,还有哪些问题不清楚,等等。

总之,实验预习时要认真阅读实验教材,积极参考网上实验学习辅导,必要时主动查阅相关资料,明确实验目的和要求,理解实验原理,掌握测量方案,初步了解仪器的构造原理和使用方法,在此基础上写好预习报告。

设计性实验项目除了做好一般实验项目的预习工作以外,还要做好下列预习工作。

(1)阐述实验原理,选择实验方案

根据实验内容要求和实验教材中实验原理的提示,认真查阅有关资料,详细写出实验原理和实验方案。

(2)选择测量仪器、测量方法和测量条件

根据实验方案的要求,确定出使用什么样的实验仪器、采用什么样的测量方法、在什么样的条件下进行测量。选择测量方法时还要考虑到选用什么样的数据处理方法。

(3)确定实验过程,拟定实验步骤

明确实验的整体过程,拟定出详细的实验步骤。

三、预习报告的主要内容

3.实验原理(必要的计算公式、原理图、电路图、光路图、相关说明等表格。)

特别说明:

预习报告为预习时写的实验报告,不一定冠名“预习”。如果预习实验报告1~4项内容书写完整规范,整齐清晰,可以作为实验报告的一部分。撰写实验报告时可以在此基础上续加其他内容。

大学物理实验报告【第三篇】

鱼洗

实验描述:

鱼洗是中国三大青铜器之一,在鱼洗内注入清水后摩擦其两耳,如果频率恰当,就会出现水面产生波纹,发出嗡嗡的声音并有水花跃出的现象。经验表明,湿润的双手比干燥的双手更容易引起水花飞跃。

实验原理:

鱼洗的原理应该是同时应用了波的叠加和共振。摩擦的双手相当于两个相干波源,他们产生的水波在盆中相互叠加,形成干涉图样。这与实验中观察到的现象相同。按照我的分析,如果振动的频率接近于鱼洗的固有频率,才会产生共振现象。通过摩擦输入的能量才会激起水花。

令人不解的是,事实上鱼洗是否能产生水花与双手的摩擦频率并没有关系。在场的同学试着摩擦的时候,无论是缓慢的摩擦还是快速的摩擦,都能引起水花四溅。通过查阅资料得知,鱼洗的原理其实是摩擦引起的自激振动。(就像用槌敲锣一样,敲击后锣面的振动频率并不等于敲击频率。)外界能量(双手的摩擦)输入鱼洗时,就会引起其以自己的固有频率震动。(正如在锣面上敲一下。)

为什么湿润的双手更容易引起鱼洗的振动呢?从实践的角度,可能是因为湿润的双手有更小的摩擦系数,因为摩擦起来更流畅,不会出现干燥双手可能会出现的“阻塞”情况,这只是我个人猜想,并没有发现资料有关于这方面的讨论。

离心力演示仪

实验描述:

离心力演示仪是一个圆柱形仪器,中间有一个细柱,细柱穿过一段闭合的硬塑料带上的两个正对小孔。塑料带的一段固定,静止时,系统为一个竖直平面的圆,中间由细柱传过。当摁下仪器上的按钮时,细柱带动塑料带在水平面旋转起来。当旋转速度增大时,可以看到塑料带的自由端延细柱向下运动,整个塑料带变成旋转的椭圆形状。

实验原理:

离心力是一个惯性力,实际上是并不存在的。绕旋转中心转动的物体有脱离中心延半径方向向外运动的趋势,产生这种趋势的力即称为离心力。当启动仪器时,塑料带各部分均作水平方向的圆周运动,所需要的向心力由临近部分的塑料小段的拉力的径向分力提供。每一个塑料小段均收到来自前后两个塑料小段的拉力。由于塑料带下端是固定的,因此在塑料带的下半部分,每个塑料小段的受力均可分解成提供向心力的径向分力和竖直向下的分力。对其上半圆部分也有类似的结果,我个人认为,塑料带一段固定是这个仪器最重要的条件,这样塑料带的下半部分的受力结果才能确定,进而上半部分每个塑料小段所受的两个拉力的关系才能确定。在竖直向下的分力作用下,塑料带被压扁成为旋转的椭圆。

辉光球

实验描述:

辉光球是圆形球体,实验室中还有一个为圆盘形状。工作时会发出动感绚烂的五彩辉光,有一种魔幻效果。仔细观察辉光球,可以看到其中的气体,蓝色的一个辉光球尤为明显。当将手指放上去时,手指接触球体的部分会被辉光点亮,同时球中会有一缕气体与碰触的位置连接,十分美丽。另外观察得知,如果用笔、尺子等其他物体接触辉光球,也会出现上述现象,但强度与用手指接触相比小得多。

实验原理:

辉光球的另一个名称是电离子魔幻球,顾名思义,它的工作原理与电离有关。经查资料得知,稀薄的稀有气体在高频的强电场作用下会发生电离作用。而从生活中的霓虹灯得知,稀有气体如果电离,则会发光,具体的颜色与气体种类有关。根据查到的资料了解,在我们的实验室的辉光球中,发出红绿蓝三色辉光的圆盘可能充有He,Ne和Xe,蓝色的辉光球中可能充有Ar。在人手触摸辉光球时,由于人体和大地相连,人触摸的位置的电势与大地的电势相等,整个辉光球的电场分布不再均匀,手指碰触的地方有更低的电势,所以会更加明亮,同时,辉光球中央的电极与人手之间的电势差会更大,因而形成的辉光弧线会一直跟随人的手指。

大学物理实验报告【第四篇】

辉光盘

实验目的:

观察平板晶体中的高压辉光放电现象。

实验仪器:大型闪电盘演示仪

实验原理闪电盘是在两层玻璃盘中密封了涂有荧光材料的玻璃珠,玻璃珠 充有稀薄的惰性气体(如氩气等)。控制器中有一块振荡电路板,通过电源变换器,将12V低压直流电转变为高压高频电压加在电极上。通电后,振荡电路产生高频电压电场,由于稀薄气体受到高频电场的电离作用二产生紫外辐射,玻璃珠上的荧光材料受到紫外辐射激发出可见光,其颜色由玻璃珠上涂敷的荧光材料决定。由于电极上电压很高,故所发生的光是一些辐射状的辉光,绚丽多彩,光芒四射,在黑暗中非常好看。

实验步骤:

1、 将闪电盘后控制器上的电位器调节到最小;

2、 插上220V电源,打开开关;

3、 调高电位器,观察闪电盘上图像变化,当电压超过一定域值后,盘上出现闪光;

4、 用手触摸玻璃表面,观察闪光随手指移动变化;

5、 缓慢调低电位器到闪光恰好消失,对闪电盘拍手或说话,观察辉光岁声音的变化。

注意事项:

1、 闪电盘为玻璃质地,注意轻拿轻放;

2、 移动闪电盘时请勿在控制器上用力,避免控制器与盘面连接断裂;

3、 闪电盘不可悬空吊挂。

辉光球

实验目的

观察辉光放电现象,了解电场、电离、击穿及发光等概念。

实验步骤

1.将辉光球底座上的电位器调节到最小;

2.插上220V电源,并打开开关;

3、 调节电位器,观察辉光球的玻璃球壳内,电压超过一定域值后中心处电极之间随机产生数道辉光;

4、用手触摸玻璃球壳,观察到辉光随手指移动变化;

5、缓慢调低电位器到辉光恰好消失,对辉光球拍手或说话,观察辉光随声音的变化。

注意事项

1、辉光球要轻拿轻放;

2、辉光球长时间工作可能会产生臭氧。

实验原理

辉光球发光是低压气体(或叫稀疏气体)在高频电场中的放电现象。玻璃球 中央有一个黑色球状电极。球的底部有一块震荡电路板,通电后,震荡电路产生高频电压电场,由于球内稀薄气体受到高频电场的电离作用而光芒四射。辉光球工作时,在球中央的电极周围形成一个类似于点电荷的场。当用手(人与大地相连)触及球时,球周围的电场、电势分布不再均匀对称,故辉光在手指的周围处

变得更为明亮,产生的弧线顺着手的触摸移动而游动扭曲,随手指移动起舞。对辉光球拍手或说话时,也会影响电场的分布。

相关介绍

辉光球又称为电离子魔幻球。它的外观为直径约15cm的高强度玻璃球壳,球内充有稀薄的惰性气体(如氩气等),玻璃球中央有一个黑色球状电极。球的底部有一块震荡电路板,通过电源变换器,将12V低压直流电转变为高压高频电压加在电极上。通电后,震荡电路产生高频电压电场,由于球内稀薄气体受到高频电场的电离作用而光芒四射,产生神秘色彩。由于电极上电压很高,故所发生的光是一些辐射状的辉光,绚丽多彩,光芒四射,在黑暗中非常好看。

在日常生活中,低压气体中显示辉光的放电现象,也有广泛的应用。例如,在低压气体放电管中,在两极间加上足够高的电压时,或在其周围加上高频电场,就使管内的稀薄气体呈现出辉光放电现象,其特征是需要高电压而电流密度较小。辉光的部位和管内所充气体的压强有关,辉光的颜色随气体的种类而异。荧光灯、霓虹灯的发光都属于这种辉光放电。

在各种各样的辉光中,最神奇的还要算人体辉光了。1911年伦敦有一位叫华尔德?基尔纳的医生运用双花青染料刷过的玻璃屏透视人体,发现在人体表面有一个厚达15毫米的彩色光层。医学家们对此研究表明,人体在疾病发生前,体表的辉光会发生变化,出现一种干扰的“日冕”现象;癌症患者体内会产生一种云状辉光;当人喝酒时辉光开始有清晰、发亮的光斑,酒醉后便转为苍白色,最后光圈内收。吸烟的人其辉光则有不谐和的现象。

实验心得

12月的一次周末,我们利用这短短的2个小时去西区参观的物理实验室,并观看了物理演示实验。在这次的演示实验课中,我学到了很多平时的生活学习中学不到的东西。在实验课上,老师让我们自己学习实验原理,自己动手学习操作,然后给同学们演示并讲解。我们第一次见到了一些很新奇的仪器和实验,通

过奇妙的物理现象感受了伟大的自然科学的奥妙。我们怀着好奇心仔细的观看了每个演示实验,通过自己的学习和同学们的认真讲解,一些看似不正常的现象都能用科学的自然知识来解释了!

我觉得我们做的虽然是演示实验,但也很有收获,这是我们对课上所学知识的一个更直观的了解,通过此次光学演示实验使我对光有了一种感性的认识,加深了对光学现象及原理的认识,为今后光学的学习打下深厚的基础,此次演示实验把理论与现实相结合,让大家在现实生活中理解光波的本质,这给我们每天的理论学习增添了一点趣味。

特别是辉光球和辉光盘,在现实生活中根本看不到,这是我第一次看。一丝一丝的五光十色的光线通过辉光球迸射出来如同礼花绽放般浪漫,让我想起了除夕夜的美妙绝伦的烟火。虽然说演示实验的过程是简单的,但它的意义绝非如此。我们学习的知识重在应用,对大学生来说,演示实验不仅开动了我们思考的马达,也让我们更好地把物理知识运用到了实际现象的分析中去,使我们不但对大自然产生了以前没有的敬畏和尊重,也有了对大自然探究的好奇心,我想这是一个人做学问最最重要的一点。因此我想在我们平时的学习中,要带着一种崇敬的心情和责任感,认认真真地学习,踏踏实实地学习,只有这样,我们才能真正学会一门课,学好一门课。此外,我觉得我们不能将眼光仅仅定位在事物的表面,不能被眼镜所欺骗,要认真的分析,理解,找出事物背后的真理;不仅在物理,生活中更应如此,只有这样我们才能成为一个完美的人,我想这也是为什么大纲上要安排这样一个演示实验的目的所在。我很庆幸能和老师一起参与本次试验,老师的细致指导是我能够顺利完成、理解本次试验的前提。

感谢老师的指导!

大学物理实验报告【第五篇】

一、实验目的

1、了解盖革——弥勒计数管的结构、原理及特性。

2、测量盖革——弥勒计数管坪曲线,并正确选择其工作电压。

3、测量盖革——弥勒计数管的死时间、恢复时间和分辨时间。

二、使用仪器、材料

G-M计数管(F5365计数管探头),前置放大器,自动定标器(FH46313Z智能定标),放射源2个。

三、实验原理

盖革——弥勒计数管简称G-M计数管,是核辐射探测器的一种类型,它只能测定核辐射粒子的数目,而不能探测粒子的能量。它具有价格低廉、设备简单、使用方便等优点,被广泛用于放射测量的工作中。 G-M计数有各种不同的结构,最常见的有钟罩形β计数管和圆柱形计数管两种,这两种计数管都是由圆柱状的阴极和装在轴线上的阳极丝密封在玻璃管内而构成的,玻璃管内充一定量的某种气体,例如,惰性气体氩、氖等,充气的气压比大气压低。由于β射线容易被物质所吸收,所以β计数管在制造上安装了一层薄的云母做成的窗,以减少β射线通过时引起的吸收,而射线的贯穿能力强,可以不设此窗

圆柱形G-M计数管

计数管系统示意图

在放射性强度不变的情况下,改变计数管电极上的电压,由定标器记录下的相应计数率(单位时间内的计数次数)可得如图所示的曲线,由于此曲线有一段比较平坦区域,因此把此曲线称为坪特性曲线,把这个平坦的部分(V1-V2)称为坪区;V0称为起始电压,V1称为阈电压,△V=V2-V1称为长度,在坪区内电压每升高1伏,计数率增加的百分数称为坪坡度。

G-M计数管的坪曲线

由于正离子鞘的存在,因而减弱了阳极附近的电场,此时若再有粒子射入计数管,就不会引起计数管放电,定标器就没有计数,随着正离子鞘向阴极移动,阴极附近的电场就逐渐得到恢复,当正离子鞘到达计数管半径r0处时,阳极附近电场刚刚恢复到可以使进入计数管的粒子引起计数管放电,这段时间称为计数管的死时间,以td来表示;正离子鞘从r0到阴极的一段时间,我们称为恢复时间,以tr表示。在恢复时间内由于

电场还没有完全恢复,所以粒子射入计数管后虽然也能引起放电,但脉冲幅度较小,当脉冲幅度小于定标器灵敏阈时,则仍然不能被定标器记录下来,随着电场的恢复,脉冲幅度也随之增大,如果在τ时间以后出现的脉冲能被定标器记录下来,那么τ就称为分辨时间。

示波器上观察到的死时间及分辨时间

在工作电压下,没有放射源时所测得的计数率称为G-M计数管的本底。它是由于宇宙射线、空气中及周围微量放射性以及制作管子用的物质中放射杂质所引起的。所以我们要在实验测量的计数率数据中减去本底计数率才能得到真正的计数率。

实验证明,在对长寿命放射性强度进行多次重复测量时,即使条件相同,每次测量的结果仍然不同;然而,每次结果都围绕着某一个平均值上下涨落,服从一定的统计规律。假如在时间τ内,核衰变平均数是n,每秒核衰变数为n的出现几率p(n)服从统计规律的泊松分布

四、实验步骤

1、测量G-M计数管坪曲线。

(1)将放射源放在计数管支架的托盘上,并对准计数管的中央部位,在测坪曲线的整个过程中,放射源位置保持不变。

(2)检查连接线及各个开关位置无误后,打开定标器的电源开关,将定标器预热数分钟,然后将高压细调旋扭开关旋到最小,打开高压开关,细调高压值,使计数管刚好开始计数。

(3)将定标器的甄别阈调伏,细调高压,仔细测出起始电压(测量两次,取平均值),然后电压每升高10伏测量十次,每次测量时间为10秒钟,直到发现计数增加时(坪长已测完),应立即降低工作电压,以免发生连续放电,将计数管损坏。

(4)将实验数据列入表中,取十次平均值,并用坐标纸画出该计数管的坪曲线,确定其起始电压,坪长度和坪坡度,然后选定其工作电压。

2、双源法测计数管分辨时间τ。

(1)准备好两个放射性强度大致相等的源,

(2)测本底300s。

(3)放上放射源1,测其放射强度1000s。

(4)放上放射源2,测量源1加源2的放射强度2000s(放上放射源2时切勿碰动源1所在的位置)。

(5)取出放射源1(切勿碰动源2),测源2的放射强度1000s。

(6)取出源2,再测本底300s。

(7)根据公式(5—3)求出计数管分辨时间τ。

3、验证泊松分布:用本底计数来验证泊松分布,时间以3秒为单位,测量次数为500次,用实验所得的平均值n,根据泊松公式作出泊松分布的理论曲线,并将实验曲线与理论曲线比较。

五、注意事项

(1)使用放射源应按规定操作,不得马虎。不能用手直接接触放射源,要移动放射源时,一定要用夹子。

(2)注意保护计数管。计数管的高压不要超过450伏,以免烧毁计数

35 200599
");