小学数学知识归纳与总结实用【优秀8篇】

网友 分享 时间:

【参照】优秀的范文能大大的缩减您写作的时间,以下优秀范例“小学数学知识归纳与总结实用【优秀8篇】”由阿拉漂亮的网友为您精心收集分享,供您参考写作之用,希望下面内容对您有所帮助,喜欢就复制下载吧!

小学数学知识归纳与总结【第一篇】

(1)亿以内数的读法和写法。

计数单位“十万”、“百万”、“千万”。相邻计数单位间的十进关系。读法和写法。数的大小比较。以万作单位的近似数。

(2)加法和减法。

加法,减法。

接近整十、整百数的加、减法的简便算法。

加、减法算式中各部分之间的关系。求未知数x。

(3)乘、除数是三位数的乘、除法。

乘数是三位数的乘法。积的变化。除数是三位数的除法。商不变的性质。被除数和除数末尾有0的简便算法。

_乘、除计算的简单估算。

乘数接近整十、整百的简便算法。

乘、除法算式中各部分之间的关系。求未知数x。

(4)四则混合运算。

中括号。三步计算的式题。

(5)整数及其四则运算的关系和运算定律。

自然数与整数。十进制计数法。读法和写法。

四则运算的意义。加法与减法、乘法与除法之间的关系。整除和有余数的除法。

运算定律。简便运算。

(6)小数的意义、性质,加法和减法。

小数的意义、性质。小数大小的比较。小数点移位引起小数大小的变化。小数的近似值。

加法和减法。加法运算定律推广到小数。

(注:小数如果分段教学,可以把小数的初步认识安排在前面的适当年级)。

(二)量与计量。

年、月、日。平年、闰年。世纪。24时计时法。

角的度量。

面积单位。

(三)几何初步知识。

直线的测定。测量距离(工具测、步测、目测)。

射线。直角、锐角、钝角、平角、_周角。垂线。画垂线。平行线。画平行线。

三角形的特征。_三角形的内角和。

(四)统计初步知识。

简单数据整理。简单统计图表的初步认识。平均数的意义。求简单的平均数。

(五)应用题列综合算式解答比较容易的三步计算的应用题。

小学数学知识归纳与总结【第二篇】

(1)分数的乘法和除法。分数乘法的意义。分数乘法。乘法的运算定律推广到分数。倒数。分数除法的意义。分数除法。

(2)分数四则混合运算。分数四则混合运算。

(3)百分数。百分数的意义和写法。百分数和分数、小数的互化。

(二)比和比例。

比的意义和性质。比例的意义和基本性质。解比例。成正比例的量和成反比例的量。

(三)几何初步知识。

圆的认识。圆周率。画圆。圆的周长和面积。_扇形的认识。轴对称图形的初步认识。圆柱的认识。圆柱的表面积和体积。圆锥的认识。圆锥的体积。球和球的半径、直径的初步认识。

(四)统计初步知识。

统计表。条形统计图,折线统计图,_扇形统计图。

(五)应用题。

分数四则应用题(包括工程问题)。百分数的实际应用(包括发芽率、合格率、利率、税率等的计算)。比例尺。按比例分配。

(六)实践活动。

联系学生所接触到的社会情况组织活动。例如就家中的卧室,画一个平面图。

(七)整理和复习。

小学数学知识归纳与总结【第三篇】

为了教和学的同步,教师应要求学生在课堂上集中思想,专心听老师讲课,认真听同学发言,抓住重点、难点、疑点听,边听边思考,对中、高年级学生提倡边听边做听课笔记。

积极思考老师和同学提出的问题,使自己始终置身于教学活动之中,这是提高学习质量和效率的重要保证。学生思考、回答问题一般要求达到:有根据、有条理、符合逻辑。随着年龄的升高,思考问题时应逐步渗透联想、假设、转化等数学思想,不断提高思考问题的质量和速度。

审题能力是学生多种能力的综合表现。教师应要求学生仔细阅读教材内容,学会抓住字眼,正确理解内容,对提示语、旁注、公式、法则、定律、图示等关键性内容更要认真推敲、反复琢磨,准确把握每个知识点的内涵与外延。建议教师们经常进行“一字之差义差万”的专项训练,不断增强学生思维的深刻性和批判性。

练习是教学活动的重要组成部分和自然延续,是学生最基本、最经常的独立学习实践活动,还是反映学生学习情况的主要方式。教师应教育学生对知识的理解不盲从优生看法,不受他人影响轻易改变自己的见解;对知识的运用不抄袭他人现成答案;课后作业要按质、按量、按时、书写工整完成,并能作到方法最佳,有错就改。

俗话说:“好问的孩子必成大器”。教师应积极鼓励学生质疑问难,带着知识疑点问老师、问同学、问家长,大力提倡学生自己设计数学问题,大胆、主动地与他人交流,这样既能融洽师生关系,增进同学友情,又可以使学生的交际、表达等方面的能力逐步提高。

6.勇于“辩”的习惯。

讨论和争辩是思维最好的媒介,它可以形成师生之间、同学之间多渠道、广泛的信息交流。让学生在争辩中表现自我、互相启迪、交流所得、增长才干,最终统一对真知的认同。

小学数学知识归纳与总结【第四篇】

分数线在分数里,中间的横线叫做分数线。

分母在分数里,分数线下面的数叫做分母,表示把单位“1”平均分成多少份。

分子在分数里,分数线上面的数叫做分子,表示有这样的多少份。

分数单位按照分母数字把单位“1”分成相等份数,表示其中一份的数,叫做分数单位。例如六分之五的分数单位是六分之一。

真分数分子比分母小的分数叫做真分数。真分数小于1。

假分数分子比分母大或者分子和分母相等的分数,叫做假分数。

繁分数一个分数,如果它的分子含有分数或者分母里含有分数,或者分子和分母里都含有分数,这个分数就叫做繁分数。

带分数由整数和真分数合成的数,通常叫做带分数。例如二又五分之一。

约分把一个分数化成同他相等,但分子和分母都比较小的分数,叫做约分。

最简分数分子和分母是互质数的分数叫做最简分数。

通分把两个异分母分数分别化成和原来分数相等的同分母分数,叫做通分。例如比较两个分数的大小,就需要通分。

分数加法分数加法的意义与整数加法的意义相同,是把两个分数合并成一个分数的运算。

分数减法分数减法的意义与整数减法的意义相同,是已知两个加数的和与其中一个加数,求另一个加数的运算。

分数乘整数分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。

一个数乘分数一个数乘分数的意义,就是求这个数的几分之几是多少。

倒数乘积是1的两个数叫做互为倒数。例如八分之三和三分之八互为倒数,就是八分之三的倒数是三分之八。

分数除法分数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算。

分数的基本性质分数的分子和分母同时乘以或者除以相同的数(零除外),分数的大小不变,这叫做分数的基本性质。

同分母分数加减法的法则同分母分数相加减,分母不变,只把分子相加减。计算结果能约分的要约成最简分数,是假分数的,一般要化成带分数或整数。

小学数学知识归纳与总结【第五篇】

考核要求:(1)理解相似形的概念;(2)掌握相似图形的特点以及相似比的意义,能将已知图形按照要求放大和缩小。

考点2:平行线分线段成比例定理、三角形一边的平行线的有关定理。

考核要求:理解并利用平行线分线段成比例定理解决一些几何证明和几何计算。

注意:被判定平行的一边不可以作为条件中的对应线段成比例使用。

考点3:相似三角形的概念。

考核要求:以相似三角形的概念为基础,抓住相似三角形的特征,理解相似三角形的定义。

考点4:相似三角形的判定和性质及其应用。

考核要求:熟练掌握相似三角形的判定定理(包括预备定理、三个判定定理、直角三角形相似的判定定理)和性质,并能较好地应用。

考点5:三角形的重心。

考核要求:知道重心的定义并初步应用。

考点6:向量的有关概念。

考点7:向量的加法、减法、实数与向量相乘、向量的线性运算。

考核要求:掌握实数与向量相乘、向量的线性运算。

考点8:锐角三角比(锐角的正弦、余弦、正切、余切)的概念,30度、45度、60度角的三角比值。

考点9:解直角三角形及其应用。

考核要求:(1)理解解直角三角形的意义;(2)会用锐角互余、锐角三角比和勾股定理等解直角三角形和解决一些简单的实际问题,尤其应当熟练运用特殊锐角的三角比的值解直角三角形。

考点10:函数以及函数的定义域、函数值等有关概念,函数的表示法,常值函数。

考核要求:(1)通过实例认识变量、自变量、因变量,知道函数以及函数的定义域、函数值等概念;(2)知道常值函数;(3)知道函数的表示方法,知道符号的意义。

考点11:用待定系数法求二次函数的解析式。

考核要求:(1)掌握求函数解析式的方法;(2)在求函数解析式中熟练运用待定系数法。

注意求函数解析式的步骤:一设、二代、三列、四还原。

考点12:画二次函数的图像。

考核要求:(1)知道函数图像的意义,会在平面直角坐标系中用描点法画函数图像;(2)理解二次函数的图像,体会数形结合思想;(3)会画二次函数的大致图像。

考点13:二次函数的图像及其基本性质。

考核要求:(1)借助图像的直观、认识和掌握一次函数的性质,建立一次函数、二元一次方程、直线之间的联系;(2)会用配方法求二次函数的顶点坐标,并说出二次函数的有关性质。

注意:(1)解题时要数形结合;(2)二次函数的平移要化成顶点式。

考点14:圆心角、弦、弦心距的概念。

考核要求:清楚地认识圆心角、弦、弦心距的概念,并会用这些概念作出正确的判断。

考点15:圆心角、弧、弦、弦心距之间的关系。

考核要求:认清圆心角、弧、弦、弦心距之间的关系,在理解有关圆心角、弧、弦、弦心距之间的关系的定理及其推论的基础上,运用定理进行初步的几何计算和几何证明。

考点16:垂径定理及其推论。

垂径定理及其推论是圆这一板块中最重要的知识点之一。

考点17:直线与圆、圆与圆的位置关系及其相应的数量关系。

直线与圆的位置关系可从与之间的关系和交点的.个数这两个侧面来反映。在圆与圆的位置关系中,常需要分类讨论求解。

考点18:正多边形的有关概念和基本性质。

考核要求:熟悉正多边形的有关概念(如半径、边心距、中心角、外角和),并能熟练地运用正多边形的基本性质进行推理和计算,在正多边形的计算中,常常利用正多边形的半径、边心距和边长的一半构成的直角三角形,将正多边形的计算问题转化为直角三角形的计算问题。

考点19:画正三、四、六边形。

考核要求:能用基本作图工具,正确作出正三、四、六边形。

考点20:确定事件和随机事件。

考核要求:(1)理解必然事件、不可能事件、随机事件的概念,知道确定事件与必然事件、不可能事件的关系;(2)能区分简单生活事件中的必然事件、不可能事件、随机事件。

考点21:事件发生的可能性大小,事件的概率。

考核要求:(1)知道各种事件发生的可能性大小不同,能判断一些随机事件发生的可能事件的大小并排出大小顺序;(2)知道概率的含义和表示符号,了解必然事件、不可能事件的概率和随机事件概率的取值范围;(3)理解随机事件发生的频率之间的区别和联系,会根据大数次试验所得频率估计事件的概率。注意:(1)在给可能性的大小排序前可先用"一定发生"、"很有可能发生"、"可能发生"、"不太可能发生"、"一定不会发生"等词语来表述事件发生的可能性的大小;(2)事件的概率是确定的常数,而概率是不确定的,可是近似值,与试验的次数的多少有关,只有当试验次数足够大时才能更精确。

考点22:等可能试验中事件的概率问题及概率计算。

本考点的考核要求是(1)理解等可能试验的概念,会用等可能试验中事件概率计算公式来计算简单事件的概率;(2)会用枚举法或画"树形图"方法求等可能事件的概率,会用区域面积之比解决简单的概率问题;(3)形成对概率的初步认识,了解机会与风险、规则公平性与决策合理性等简单概率问题。

在求解概率问题中要注意:(1)计算前要先确定是否为可能事件;(2)用枚举法或画"树形图"方法求等可能事件的概率过程中要将所有等可能情况考虑完整。

考点23:数据整理与统计图表。

本考点考核要求是:(1)知道数据整理分析的意义,知道普查和抽样调查这两种收集数据的方法及其区别;(2)结合有关代数、几何的内容,掌握用折线图、扇形图、条形图等整理数据的方法,并能通过图表获取有关信息。

考点24:统计的含义。

本考点的考核要求是:(1)知道统计的意义和一般研究过程;(2)认识个体、总体和样本的区别,了解样本估计总体的思想方法。

考点25:平均数、加权平均数的概念和计算。

本考点的考核要是:(1)理解平均数、加权平均数的概念;(2)掌握平均数、加权平均数的计算公式。注意:在计算平均数、加权平均数时要防止数据漏抄、重抄、错抄等错误现象,提高运算准确率。

考点26:中位数、众数、方差、标准差的概念和计算。

考核要求:(1)知道中位数、众数、方差、标准差的概念;(2)会求一组数据的中位数、众数、方差、标准差,并能用于解决简单的统计问题。

注意:当一组数据中出现极值时,中位数比平均数更能反映这组数据的平均水平;(2)求中位数之前必须先将数据排序。

考点27:频数、频率的意义,画频数分布直方图和频率分布直方图。

考核要求:(1)理解频数、频率的概念,掌握频数、频率和总量三者之间的关系式;(2)会画频数分布直方图和频率分布直方图,并能用于解决有关的实际问题。解题时要注意:频数、频率能反映每个对象出现的频繁程度,但也存在差别:在同一个问题中,频数反映的是对象出现频繁程度的绝对数据,所有频数之和是试验的总次数;频率反映的是对象频繁出现的相对数据,所有的频率之和是1。

考点28:中位数、众数、方差、标准差、频数、频率的应用。

本考点的考核要是:(1)了解基本统计量(平均数、众数、中位数、方差、标准差、频数、频率)的意计算及其应用,并掌握其概念和计算方法;(2)正确理解样本数据的特征和数据的代表,能根据计算结果作出判断和预测;(3)能将多个图表结合起来,综合处理图表提供的数据,会利用各种统计量来进行推理和分析,研究解决有关的实际生活中问题,然后作出合理的解决。

小学数学知识归纳与总结【第六篇】

(一)“大数的认识”:

1.知识技能目标:巩固所学的计数单位和相邻两个单位之间的进率,掌握数位顺序表,能正确地读写大数,掌握改写和省略的方法。

(2)多位数的读写法的方法是什么?

(3)改写和省略的方法是什么?

(4)如何比较数的大小?

3.对应练习。

(1)读出下面各数。

62315797005008239804000001000400070。

4003000023674001000061540000030708000000。

(2)写出下面各数。

四千零二万一百零三二千零四十万四千零三十。

一十亿零五百六十八一百二十亿四千零八万五千零四十。

(3)改写成以亿做单位的数:224100000000212000000000。

(4)求近似数。

265805602527641880808(省略万后面的'尾数)。

34564631071233547811220805658(省略亿后面的尾数)。

(5)用1、5、7、9和4个0按要求写出八位数。

最大的数(),最小的数是(),一个0都不读的数,只读出一个0的数(),要读出2个0的数()。

(二)“乘除法”复习。

1.知识技能目标:通过复习,巩固所学的乘除法口算和笔算的计算方法,在计算过程中能灵活应用因数和积的关系、商变化的规律,正确熟练地计算。

2.复习知识点:

(1)复习口算。

230×4=3×380=150×4=108×3=。

350×2=70×5=2700÷30=1800÷60=。

360÷90=2400÷60=8000÷40=4200÷60=。

(2)不计算,直接写出下面的积。

16×392=6272160×392=16×3920=。

792÷24=33396÷12=1584÷48=。

想一想,你是根据什么得出结果的?(积的变化规律和商的变换规律)。

(3)笔算。

145×37=540×18=508×60=509×57=。

948÷19=676÷64=516÷43=338÷13=。

小学数学知识归纳与总结【第七篇】

1、求教与自学相结合,在学习过程中,既要争取教师的指导和帮助,但是又不能处处依靠教师。必须自己主动地去学习、去探索、去获取,应该在自己认真学习和研究的基础上去寻求教师和同学的帮助。

2、学用结合,勤于实践,在学习过程中,要准确地掌握抽象概念的本质含义。了解从实际模型中抽象为理论的演变过程;对所学理论知识,要在更大范围内寻求它的具体实例,使之具体化,尽量将所学的理论知识和思维方法应用于实践。

3、学习与思考相结合,在学习过程中,对课本的内容要认真研究,提出疑问,追本穷源。对每一个概念、公式、定理都要弄清其来龙去脉、前因后果,内在联系,以及蕴含于推导过程中的数学思想和方法。

4、博观约取,由博返约,课本是学生获得知识的主要来源,但不是唯一的来源。在学习过程中,除了认真研究课本外,还要阅读有关的课外资料,来扩大知识领域。

5、及时复习,增强记忆。课堂上学习的内容,必须当天消化,要先复习,后做练习。复习工作必须经常进行,每一单元结束后,应将所学知识进行概括整理,使之系统化、深刻化。

6、学习中的总结和评价,是学习的继续和提高,它有利于知识体系的建立、解题规律的掌握、学习方法和态度的调整和评判能力的提高。在学习过程中,应注意总结听课、阅读和解题中的收获和体会。

小学数学知识归纳与总结【第八篇】

数数:数数时,按一定的顺序数,从1开始,数到最后一个物体所对应的那个数,即最后数到几,就是这种物体的总个数。

2、比多少。

同样多:当两种物体一一对应后,都没有剩余时,就说这两种物体的数量同样多。

比多少:当两种物体一一对应后,其中一种物体有剩余,有剩余的那种物体多,没有剩余的那种物体少。

比较两种物体的多或少时,可以用一一对应的方法。

1、认识上、下。

体会上、下的含义:从两个物体的位置理解:上是指在高处的物体,下是指在低处的物体。

2、认识前、后。

体会前、后的含义:一般指面对的方向就是前,背对的方向就是后。

同一物体,相对于不同的参照物,前后位置关系也会发生变化。

从而得出:确定两个以上物体的前后位置关系时,要找准参照物,选择的参照物不同,相对的前后位置关系也会发生变化。

3、认识左、右。

以自己的左手、右手所在的位置为标准,确定左边和右边。右手所在的一边为右边,左手所在的一边为左边。

要点提示:在确定左右时,除特殊要求,一般以观察者的左右为准。

一、1——5的认识。

1、1—5各数的含义:每个数都可以表示不同物体的数量。有几个物体就用几来表示。

2、1—5各数的数序。

从前往后数:1、2、3、4、5。

从后往前数:5、4、3、2、1。

3、1—5各数的写法:根据每个数字的形状,按数字在田字格中的位置,认真、工整地进行书写。

二、比大小。

1、前面的数等于后面的数,用“=”表示,即3=3,读作3等于3。前面的数大于后面的数,用“”表示,即32,读作3大于2。前面的数小于后面的数,用“”表示,即34,读作3小于4。

2、填“”或“”时,开口对大数,尖角对小数。

三、第几。

1、确定物体的排列顺序时,先确定数数的方向,然后从1开始点数,数到几,它的顺序就是“第几”。第几指的是其中的某一个。

2、区分“几个”和“第几”

“几个”表示物体的多少,而“第几”只表示其中的.一个物体。

四、分与合。

数的组成:一个数(1除外)分成几和几,先把这个数分成1和几,依次分到几和1为止。例如:5的组成有1和4,2和3,3和2,4和1。

把一个数分成几和几时,要有序地进行分解,防止重复或遗漏。

五、加法。

1、加法的含义:把两部分合在一起,求一共有多少,用加法计算。

2、加法的计算方法:计算5以内数的加法,可以采用点数、接着数、数的组成等方法。其中用数的组成计算是最常用的方法。

六、减法。

1、减法的含义:从总数里去掉(减掉)一部分,求还剩多少用减法计算。

2、减法的计算方法:计算减法时,可以用倒着数、数的分成、想加算减的方法来计算。

七、0。

1、0的意义:0表示一个物体也没有,也表示起点。

2、0的读法:0读作:零。

3、0的写法:写0时,要从上到下,从左到右,起笔处和收笔处要相连,并且要写圆滑,不能有棱角。

4、0的加、减法:任何数与0相加都得这个数,任何数与0相减都得这个数,相同的两个数相减等于0。

如:0+8=8、9-0=9、4-4=0。

1、长方体的特征:长长方方的,有6个平平的面,面有大有小。

2、正方体的特征:四四方方的,有6个平平的面,面的大小一样。

3、圆柱的特征:直直的,上下一样粗,上下两个圆面大小一样。放在桌子上能滚动。立在桌子上不能滚动。

4、球的特征:圆圆的,很光滑,它的表面是曲面。放在桌子上能向任意方向滚动。

5、立体图形的拼摆:用长方体或正方体能拼组出不同形状的立体图形,在拼好的立体图形中,有一些部位从一个角度是看不到的,要从多个角度去观察。用小圆柱可以拼成更大的圆柱。

一、6—10的认识:

1、数数:根据物体的个数,可以用6—10各数来表示。数数时,从前往后数也就是从小往大数。

2、10以内数的顺序:

(1)从前往后数:0、1、2、3、4、5、6、7、8、9、10。

(2)从后往前数:10、9、8、7、6、5、4、3、2、1、0。

3、比较大小:按照数的顺序,后面的数总是比前面的数大。

4、序数含义:用来表示物体的次序,即第几个。

5、数的组成:一个数(0、1除外)可以由两个比它小的数组成。如:10由9和1组成。

记忆数的组成时,可由一组数想到调换位置的另一组。

二、6—10的加减法。

1、10以内加减法的计算方法:根据数的组成来计算。

2、一图四式:根据一副图的思考角度不同,可写出两道加法算式和两道减法算式。

3、“大括号”下面有问号是求把两部分合在一起,用加法计算。“大括号”上面的一侧有问号是求从总数中去掉一部分,还剩多少,用减法计算。

三、连加连减。

1、连加的计算方法:计算连加时,按从左到右的顺序进行,先算前两个数的和,再与第三个数相加。

2、连减的计算方法:计算连减时,按从左到右的顺序进行,先算前两个数的差,再用所得的数减去第三个数。

四、加减混合。

加减混合的计算方法:计算时,按从左到右的顺序进行,先把前两个数相加(或相减),再用得数与第三个数相减(或相加)。

1、数数:根据物体的个数,可以用11—20各数来表示。

3、比较大小:可以根据数的顺序比较,后面的数总比前面的数大,或者利用数的组成进行比较。

4、11—20各数的组成:都是由1个十和几个一组成的,20由2个十组成的。如:1个十和5个一组成15。

5、数位:从右边起第一位是个位,第二位是十位。

6、11—20各数的读法:从高位读起,十位上是几就读几十,个位上是几就读几。20的读法,20读作:二十。

7、写数:写数时,对照数位写,有1个十就在十位上写1,有2个十就在十位上写2。有几个一,就在个位上写几,个位上一个单位也没有,就写0占位。

8、十加几、十几加几与相应的减法。

(1)10加几和相应的减法的计算方法:10加几得十几,十几减几得十,十几减十得几。

(2)十几加几和相应的减法的计算方法:计算十几加几和相应的减法时,可以利用数的组成来计算,也可以把个位上的数相加或相减,再加整十数。

(3)加减法的各部分名称:

在加法算式中,加号前面和后面的数叫加数,等号后面的数叫和。

在减法算式中,减号前面的数叫被减数,减号后面的数叫减数,等号后面的数叫差。

9、解决问题。

求两个数之间有几个数,可以用数数法,也可以用画图法。还可以用计算法(用大数减小数再减1的方法来计算)。

1、认识钟面。

钟面:钟面上有12个数,有时针和分针。

分针:钟面上又细又长的指针叫分针。

时针:钟面上又粗又短的指针叫时针。

2、钟表的种类:日常生活中的钟表一般分两种,一种:挂钟,钟面上有12个数,分针和时针。另一种:电子表,表面上有两个点“:”,“:”的左边和右边都有数。

3、认识整时:分针指向12,时针指向几就是几时;电子表上,“:”的右边是“00”时表示整时,“:”的左边是几就是几时。

4、整时的写法:整时的写法有两种:写成几时或电子表数字的形式。如:8时或8:00。

1、9加几计算方法:计算9加几的进位加法,可以采用“点数”“接着数”“凑十法”等方法进行计算,其中“凑十法”比较简便。

利用“凑十法”计算9加几时,把9凑成10需要1,就把较小数拆成1和几,10加几就得十几。

2、8、7、6加几的计算方法:

(1)点数;。

(2)接着数;。

(3)凑十法。可以“拆大数、凑小数”,也可以“拆小数、凑大数”。

3、5、4、3、2加几的计算方法:

(1)“拆大数、凑小数”。

(2)“拆小数、凑大数”。

4、解决问题。

(1)解决问题时,可以从不同的角度观察、分析、从而找到不同的解题方法。

(2)求总数的实际问题,用加法计算。

35 2612903
");