实用物业收费报告大全【最新10篇】

网友 分享 时间:

【参照】优秀的范文能大大的缩减您写作的时间,以下优秀范例“实用物业收费报告大全【最新10篇】”由阿拉漂亮的网友为您精心收集分享,供您参考写作之用,希望下面内容对您有所帮助,喜欢就复制下载吧!

最新物业收费报告大全【第一篇】

2?培养学生准确地运算能力,并适当地渗透特殊与一般的辨证关系的思想。

重点和难点:正确地求出代数式的值。

一、从学生原有的认识结构提出问题。

1?用代数式表示:(投影)。

(1)a与b的和的平方;(2)a,b两数的平方和;。

(3)a与b的和的50%?

2?用语言叙述代数式2n+10的意义?

3?对于第2题中的代数式2n+10,可否编成一道实际问题呢?(在学生回答的基础上,教师打投影)。

若学校有15个班(即n=15),则添置排球总数为多少个?若有20个班呢?

二、师生共同研究代数式的值的意义。

2?结合上述例题,提出如下几个问题:

(1)求代数式2x+10的值,必须给出什么条件?

(2)代数式的值是由什么值的确定而确定的?

(3)求代数式的值可以分为几步呢?在“代入”这一步,应注意什么呢?

下面教师结合例题来引导学生归纳,概括出上述问题的答案?(教师板书例题时,应注意格式规范化)。

例1当x=7,y=4,z=0时,求代数式x(2x-y+3z)的值?

解:当x=7,y=4,z=0时,

x(2x-y+3z)=7×(2×7-4+3×0)。

=7×(14-4)。

=70?

注意:如果代数式中省略乘号,代入后需添上乘号。

最新物业收费报告大全【第二篇】

知识:对顶角邻补角概念,对顶角的性质。

方法:图形结合、类比。

情感:合作交流,主动参与的意识。

对顶角的概念、性质。

“对顶角相等”的探究;小组讨论。

导课。

同学们,你们看我左手拿着一块布,右手拿着一把剪刀,现在我用剪刀把布片剪开,同学们仔细观察,随着两把手之间的角逐渐变小,剪刀刃之间的角怎样变化?(学生答:也相应变小)如果把剪刀的'构造看作两条相交的直线,这就关系到两条相交直线所成的角的问题(板书课题)。

阅读质疑,自主探究。

请大家阅读课本p,回答以下问题(自探提纲):

2、什么样的两个角互为邻补角?什么样的两个角互为对顶角?

3、对顶角有什么性质?你是怎样得到的?

多元互动,合作探究。

同学们阅读教材后,对自己不能解决的问题分小组讨论,然后老师针对自探提纲的问题让学生回答。先让学困生、中等生回答,优等生做补充、归纳,特别是问题3的第2问,最后老师强调:

1、注意“互为”的含义。邻补角和对顶角都是要两个角互为邻补角或对顶角。

2、“邻补角”这个名称,即包含了这两个角的位置关系,还包含了数量关系,对顶角一定是两条相交直线所构成的,这是一个前提条件。

3、“对顶角相等”的推导过程。

最新物业收费报告大全【第三篇】

教学目标:

1.掌握坐标变化与图形平移的关系;能利用点的平移规律将平面图形进行平移;会根据图形上点的坐标的变化,来判定图形的移动过程。

2.发展学生的形象思维能力,和数形结合的意识。

3.用坐标表示平移体现了平面直角坐标系在数学中的应用。

4.培养学生探究的兴趣和归纳概括的能力,体会使复杂问题简单化。

重点:掌握坐标变化与图形平移的关系。

难点:利用坐标变化与图形平移的关系解决实际问题。

教学过程。

一、引言。

上节课我们学习了用坐标表示地理位置,本节课我们继续研究坐标方法的另一个应用。

二、新。

展示问题:教材第75页图.

长度呢?

(2)把点a向左或向下平移4个单位长度,观察他们的变化,你能从中发现什么规律吗?

(3)再找几个点,对他们进行平移,观察他们的坐标是否按你发现的规律变化?

));将点(xy)向上(或下)平移b个单位长度可以得到对应点(xy+b)(或()).

标的某种变化,我们也可以看出对这个图形进行了怎样的平移.

例如图(1),三角形abc三个顶点坐标分别是a(4,3),b(3,1),c(1,2).

所得三角形a1b1c1与三角形abc的大小、形状和位置上有什么关系?

所得三角形a2b2c2与三角形abc的大小、形状和位置上有什么关系?

引导学生动手操作,按要求画出图形后,解答此例题.

向下平移5个单位长度得到.

课本p77思考题:由学生动手画图并解答.

归纳:

三、练习:教材第78页练习;习题中第1、2、4题.

四、作业布置第78页第3题.

最新物业收费报告大全【第四篇】

1、了解正数与负数是实际生活的需要。

2、会判断一个数是正数还是负数。

3、会用正负数表示互为相反意义的量。

会判断正数、负数,运用正负数表示具有相反意义的量,理解表示具有相反意义的量的意义。

负数的引入。

(一)创设情境,导入新课。

课件展示珠穆朗玛峰和吐鲁番盆地,让同学感受高于水平面和低于水平面的不同情况。

(二)合作交流,解读探究。

举出一些生活中常遇到的具有相反意义的量,如温度是零上7℃和零下5℃,买进90张课桌与卖出80张课桌,汽车向东行50米和向西行120米等。

为了用数表示具有相反意义的量,我们把具有其中一种意义的量,如零上温度、前进、收入、上升、高出等规定为正的,而把具有与它意义相反的量,如零下温度、后退、支出、下降、低于等规定为负的,正的量用算术里学过的数表示,负的`量用学过的数前面加上“—”(读作负)号来表示(零除外)。

活动每组同学之间相互合作交流,一同学说出有关相反意义的两个量,由其他同学用正负数表示。

讨论什么样的数是负数?什么样的数是正数?0是正数还是负数?自己列举正数、负数。

总结正数是大于0的数,负数是在正数前面加“—”号的数,0既不是正数,也不是负数,是正数与负数的分界点。

(三)应用迁移,巩固提高。

例1:举出几对具有相反意义的量,并分别用正、负数表示。

提示:具有相反意义的量有“上升”与“下降”,“前”与“后”、“高于”与“低于”、“得到”与“失去”、“收入”与“支出”等。

例3:某项科学研究以45分钟为1个时间单位,并记为每天上午10时为0,10时以前记为负,10时以后记为正。例如,9:15记为—1,10:45记为1等等。依此类推,上午7:45应记为()。

—3c.——。

点拨:读懂题意是解决本题的关键。7:45与10:00相差135分钟。

(四)总结反思,拓展升华。

为了表示现实生活中具有相反意义的量引进了负数。正数就是我们过去学过(除零外)的数,在正数前加上“—”号就是负数,不能说“有正号的数是正数,有负号的数是负数”。另外,0既不是正数,也不是负数。

1、下表是小张同学一周中简记储蓄罐中钱的进出情况表(存入记为“+”):

星期日一二三四五六。

(元)+16+———+10—。

(1)本周小张一共用掉了多少钱?存进了多少钱?

(2)储蓄罐中的钱与原来相比是多了还是少了?

(3)如果不用正、负数的方法记账,你还可以怎样记账?比较各种记账的优劣。

2、数学游戏:4个同学站或蹲成一排,从左到右每个人编上号:1,2,3,4。用“+”表示“站”,“—”(负号)表示“蹲”。

(2)增加游戏难度,把4个同学顺序调整一下,但每个人记作自己原来的编号,再重复(1)中的游戏。

(五)课堂跟踪反馈。

夯实基础。

1、填空题:

(1)如果节约用水30吨记为+30吨,那么浪费20吨记为xxx吨。

(2)如果4年后记作+4年,那么8年前记作xx年。

(3)如果运出货物7吨记作—7吨,那么+100吨表示xxx。

(4)一年内,小亮体重增加了3kg,记作+3kg;小阳体重减少了2kg,则小阳增加了xxx。

2、中午12时,水位低于标准水位米,记作—米,下午1时,水位上涨了1米,下午5时,水位又上涨了米。

(1)用正数或负数记录下午1时和下午5时的水位;

(2)下午5时的水位比中午12时水位高多少?

提升能力。

3、粮食每袋标准重量是50公斤,现测得甲、乙、丙三袋粮食重量如下:52公斤,49公斤,公斤。如果超重部分用正数表示,请用正数和负数记录甲、乙、丙三袋粮食的超重数和不足数。

(六)课时小结。

1、与以前相比,0的意义又多了哪些内容?

2、怎样用正数和负数表示具有相反意义的量?(用正数表示其中具有一种意义的量,另一种量用负数表示)。

最新物业收费报告大全【第五篇】

学习目标:

1.会用正.负数表示具有相反意义的量.

2.通过正.负数学习,培养学生应用数学知识的意识.

3.通过探究,渗透对立统一的辨证思想。

学习重点:

用正.负数表示具有相反意义的量。

学习难点:

实际问题中的数量关系。

教学方法:

讲练相结合。

教学过程。

一.学前准备。

通过上节课的学习,我们知道在实际生产和生活中存在着两种不同意义的量,为了区分它们,我们用正数和负数来分别表示它们.

问题1:“零”为什么即不是正数也不是负数呢?

引导学生思考讨论,借助举例说明.

参考例子:温度表示中的零上,零下和零度.

二.探究理解解决问题。

问题2:(教科书第4页例题)。

先引导学生分析,再让学生独立完成。

(2)20xx年下列国家的商品进出口总额比上一年的变化情况是:

美国减少%,德国增长%,

法国减少%,英国减少%,

意大利增长%,中国增长%.

写出这些国家20xx年商品进出口总额的增长率.

解:(1)这个月小明体重增长2kg,小华体重增长―1kg,小强体重增长0kg.

(2)六个国家20xx年商品进出口总额的增长率:

美国―%,德国%,

法国―%,英国―%,

意大利%,中国%.

三.巩固练习。

从0表示一个也没有,是正数和负数的分界的角度引导学生理解.

在学生的讨论中简单介绍分类的数学思想先不要给出有理数的概念.

在例题中,让学生通过阅读题中的含义,找出具有相反意义的量,决定哪个用正数表示,哪个用负数表示.

通过问题(2)提醒学生审题时要注意要求,题中求的是增长率,不是增长值.

四.阅读思考1页。

(教科书第8页)用正负数表示加工允许误差.

问题:1.直径为和直径为的零件是否合格?

2.你知道还有那些事件可以用正负数表示允许误差吗?请举例.

五.小结。

1.本节课你有那些收获?

2.还有没解决的问题吗?

六.应用与拓展。

1.必做题:

教科书5页习题:题。

2.选做题。

1).甲冷库的温度是―12°c,乙冷库的温度比甲冷酷低5°c,则乙冷库的温度是.

最新物业收费报告大全【第六篇】

3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣。

正数和负数概念。

一、知识链接:

1、小学里学过哪些数请写出来:

2、阅读课本p2三幅图(重点是三个例子,边阅读边思考)回答下面提出的问题:

3、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?

二、自主学习。

1、正数与负数的产生。

(1)生活中具有相反意义的量如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量。请你也举一个具有相反意义量的例子。

(2)负数的产生同样是生活和生产的需要。

2、正数和负数的表示方法。

(1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“-”(读作负)号来表示,如上面的-3、-8、-47。

(2)活动:两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示。

(3)阅读p2的内容。

3、正数、负数的.概念。

1)大于0的数叫做,小于0的数叫做。

2)正数是大于0的数,负数是的数,0既不是正数也不是负数。

第1,2题(直接做在课本上)。

2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________。

3.已知下列各数:13,2,,+3065,0,-239;54,则正数有______________;负数有____________________。

4.下列结论中正确的是()。

既是正数,又是负数。

是最大的负数。

正数、负数的概念:

(1)大于0的数叫做,小于0的数叫做。

(2)正数是大于0的数,负数是的数,0既不是正数也不是负数。

1.零下15℃,表示为_________,比0℃低4℃的温度是_________。

2.地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海拔高度为-5米,其中最高处为_______地,最低处为_______地。

3.“甲比乙大-3岁”表示的意义是_________________。

4.如果海平面的高度为0米,一潜水艇在海水下40米处航行,一条鲨鱼在潜水艇上方10米处游动,试用正负数分别表示潜水艇和鲨鱼的高度。课后作业:p5第1、2题。

最新物业收费报告大全【第七篇】

1.利用10的乘方,进行科学记数,会用科学记数法表示大于10的数;(重点)。

2.能将用科学记数法表示的数还原为原数.(重点)。

教学过程。

一、情境导入。

在悉尼举行的国际天文学联合会大会上,天文学家指出整个可见宇宙空间大约有700万亿亿颗恒星,这个数字比地球上所有沙漠和海滩上的沙砾总和数量还要多.

如果想在字面上表示出这一数字,需要在“7”后面加上22个“0”.即约为“70000000000000000000000”颗.

生活中,我们还常会遇到一些比较大的数.例如:

1.据报载,20xx年我国将发展固定宽带接入新用户25000000户.

2.全球每年大约有577000000000000m3的水从海洋和陆地转化为大气中的水汽.

3.拒绝“餐桌浪费”刻不容缓,据统计,全国每年浪费粮食总量约50000000000千克.

二、合作探究。

探究点一:用科学记数法表示大数。

例1我区深入实施环境污染整治,关停和整改了一些化工企业,使得每年排放的污水减少了167000吨,将167000用科学记数法表示为()。

××104。

××106。

解析:根据科学记数法的表示形式,先确定a,再确定n,解此类题的关键是a,n的确定.167000=×105,故选c.

方法总结:科学记数法的表示形式为a×10n,其中1≤|a|10,n为整数,表示时关键要正确确定a的值以及n的值.

例220xx年3月发生了一件举国悲痛的空难事件——马航失联,该飞机上有中国公民154名.噩耗传来后,我国为了搜寻生还者及找到失联飞机,花费了大量的人力物力,已花费人民币大约934千万元.把934千万元用科学记数法表示为______元()。

××103。

××1010。

解析:934千万=9340000000=×109.故选c.

方法总结:对用带“万”“千万”“亿”等单位的数用科学记数法表示时,要化成不带单位的数,再用科学记数法表示.

探究点二:将用科学记数法表示的数转换为原数。

例3已知下列用科学记数法表示的数,写出原来的数:

(1)×104;(2)×105;(3)-3×103.

解析:(1)将的小数点向右移动4位即可;(2)将的小数点向右移动5位即可;(3)将-3扩大1000倍即可.

解:(1)×104=0;。

(2)×105=607000;。

(3)-3×103=-3000.

方法总结:将科学记数法a×10n表示的数,“还原”成通常表示的数,就是把a的小数点向右移动n位所得到的数.

三、板书设计。

科学记数法:

(1)把大于10的数表示成a×10n的形式.

(2)a的范围是1≤|a|10,n是正整数.

(3)n比原数的整数位数少1.

教学反思。

本节课的特点是实际性强,和我们的日常生活联系紧密,从学生的生活经验和已有的知识出发,创设生动有趣的情境,引导学生开展观察、讨论、交流等活动.把学生被动接受知识的过程变为主动探究发现的过程,使知识的发生与发展在每一位学生各自的体验和自主学习中逐渐展现.

最新物业收费报告大全【第八篇】

重点:邻补角与对顶角的概念。对顶角性质与应用。

难点:理解对顶角相等的性质的探索。

教学设计。

一、创设情境激发好奇观察剪刀剪布的过程,引入两条相交直线所成的角。

在我们的生活的世界中,蕴涵着大量的相交线和平行线,本章要研究相交线所成的角和它的特征。

观察剪刀剪布的过程,引入两条相交直线所成的角。

学生观察、思考、回答问题。

二、认识邻补角和对顶角,探索对顶角性质。

1、学生画直线ab、cd相交于点o,并说出图中4个角,两两相配。

共能组成几对角?根据不同的位置怎么将它们分类?

学生思考并在小组内交流,全班交流。

当学生直观地感知角有“相邻”、“对顶”关系时,教师引导学生用。

几何语言准确表达;。

有公共的顶点o,而且的两边分别是两边的反向延长线。

2、学生用量角器分别量一量各角的度数,发现各类角的度数有什么关系?

(学生得出结论:相邻关系的两个角互补,对顶的两个角相等)。

3学生根据观察和度量完成下表:

两条直线相交所形成的角分类位置关系数量关系。

教师提问:如果改变的大小,会改变它与其它角的位置关系和数量关系吗?

4、概括形成邻补角、对顶角概念和对顶角的性质。

三、初步应用。

练习。

下列说法对不对。

(1)邻补角可以看成是平角被过它顶点的一条射线分成的两个角。

(2)邻补角是互补的两个角,互补的两个角是邻补角。

(3)对顶角相等,相等的两个角是对顶角。

学生利用对顶角相等的性质解释剪刀剪布过程中所看到的现象。

四。巩固运用例题:如图,直线a,b相交,,求的度数。

巩固练习。

教科书5页练习已知,如图,,求:的度数。

小结。

邻补角、对顶角。

作业课本p9—1,2p10—7,8。

最新物业收费报告大全【第九篇】

1、熟练掌握一元一次不等式组的解法,会用一元一次不等式组解决有关的实际问题;

3、体验数学学习的乐趣,感受一元一次不等式组在解决实际问题中的价值。

正确分析实际问题中的不等关系,列出不等式组。

建立不等式组解实际问题的数学模型。

出示教科书第145页例2(略)

问:(1)你是怎样理解“不能完成任务”的数量含义的?

(2)你是怎样理解“提前完成任务”的数量含义的?

(3)解决这个问题,你打算怎样设未知数?列出怎样的不等式?

师生一起讨论解决例2.

1、教科书146页“归纳”(略).

2、你觉得列一元一次不等式组解应用题与列二元一次方程组解应用题的步骤一样吗?

在讨论或议论的基础上老师揭示:

步法一致(设、列、解、答);本质有区别.(见下表)一元一次不等式组应用题与二元一次方程组应用题解题步骤异同表。

最新物业收费报告大全【第十篇】

本节教学的重点是掌握单项式与多项式相乘的法则.难点是正确、迅速地进行单项式与多项式相乘的计算.本节知识是进一步学习多项式乘法,以及乘法公式等后续知识的基础。

1.单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加,即。

其中,可以表示一个数、一个字母,也可以是一个代数式.。

2.利用法则进行单项式和多项式运算时要注意:

3根据去括号法则和多项式中每一项包含它前面的符号,来确定乘积每一项的`符号;

设m=-4x2,a=2x2,b=3x,c=-1,

∴(-4x2)·(2x2+3x-1)。

=m(a+b+c)。

=ma+mb+mc。

=(-4x2)·2x2+(-4x2)·3x+(-4x2)·(-1)。

=-8x4-12x3+4x2.。

这样过渡较自然,同时也渗透了一些代换的思想.。

教学设计示例。

一、教学目标。

1.理解和掌握单项式与多项式乘法法则及推导.。

2.熟练运用法则进行单项式与多项式的乘法计算.。

3.培养灵活运用知识的能力,通过用文字概括法则,提高学生数学表达能力.。

4.通过反馈练习,培养学生计算能力和综合运用知识的能力.。

5.渗透公式恒等变形的数学美.。

二、学法引导。

1.教学方法:讲授法、练习法.。

类项,故在学习中应充分利用这种方法去解题.。

三、重点·难点·疑点及解决办法。

(一)重点。

单项式与多项式乘法法则及其应用.。

(二)难点。

单项式与多项式相乘时结果的符号的确定.。

(三)解决办法。

复习单项式与单项式的乘法法则,并注意在解题过程中将单项式乘多项式转化为单项。

式乘单项式后符号确定的问题.。

四、课时安排。

一课时.。

五、教具学具准备。

投影仪、胶片.。

六、师生互动活动设计。

(一)明确目标。

本节课重点学习单项式与多项式的乘法法则及其应用.。

(二)整体感知。

(三)教学过程。

1.复习导入。

复习:

(1)叙述单项式乘法法则.。

(单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.)。

(2)什么叫多项式?说出多项式的项和各项系数.

2.探索新知,讲授新课。

简便计算:

由该等式,你能说出单项式与多项式相乘的法则吗?单项式与多项式乘法法则:单项式。

与多项式相乘,就是用单项式乘多项式的每一项,再把所得的积相加.。

例1计算:

例2化简:

练习:错例辨析。

(2)错在单项式与多项式的每一项相乘之后没有添上加号,故正确答案为。

(四)总结、扩展。

(99,河北)下列运算中,不正确的为()。

a.b.。

c.d.。

八、布置作业。

参考答案:

35 2269717
");