八年级的数学教案样例8篇

网友 分享 时间:

【参照】优秀的范文能大大的缩减您写作的时间,以下优秀范例“八年级的数学教案样例8篇”由阿拉漂亮的网友为您精心收集分享,供您参考写作之用,希望下面内容对您有所帮助,喜欢就复制下载吧!

八年级的数学教案【第一篇】

在教学中努力推进九年义务教育,落实新课改,体现新理念,培养创新精神。

通过数学课的教学,使学生切实学好从事现代化建设和进一步学习现代化科学技术所必需的数学基本知识和基本技能;努力培养学生的运算能力、逻辑思维能力,以及分析问题和解决问题的能力。

二、学情分析

八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。优生不多,思想不够活跃,有少数学生不上进,思维跟不上。要在本期获得理想成绩,老师和学生都要付出努力,充分发挥学生是学习的主体,教师是教的主体作用,注重方法,培养能力。

三、本学期教学内容分析

本学期教学内容共计六章。

第一章《三角形的证明》

本章将证明与等腰三角形和直角三角形的性质及判定有关的一些结论,证明线段垂直平分线和角平分线的有关性质,将研究直角三角形全等的判定,进一步体会证明的必要性。

第二章《一元一次不等式和一元一次不等式组》

本章通过具体实例建立不等式,探索不等式的基本性质,了解一般不等式的解、解集、解集在数轴上的表示,一元一次不等式的解法及应用;通过具体实例渗透一元一次不等式、一元一次方程和一次函数的内在联系.最后研究一元一次不等式组的解集和应。

第三章《图形的平移与旋转》

本章将在小学学习的基础上进一步认识平面图形的平移与旋转,探索平移,旋转的性质,认识并欣赏平移,中心对称在自然界和现实生活中的应用。

第四章《分解因式》

本章通过具体实例分析分解因式与整式的乘法之间的关系揭示分解因式的实质,最后学习分解因式的几种基本方法。

第五章《分式与分式方程》

本章通过分数的有关性质的回顾建立了分式的概念、性质和运算法则,并在此基础上学习分式的化简求值、解分式方程及列分式方程解应用题,能解决简单的实际应用问题。

第六章《平行四边形》

本章将研究平行四边形的性质与判定,以及三角形中位线的性质,还将探索多边形的内角和,外角和的规律;经历操作,实验等几何发现之旅,享受证明之美。

四、主要措施

1、面向全体学生。

由于学生在知识、技能方面的发展和兴趣、特长等不尽相同,所以要因材施教。在组织教学时,应从大多数学生的实际出发,并兼顾学习有困难的和学有余力的学生。对学习有困难的学生,要特别予以关心,及时采取有效措施,激发他们学习数学的兴趣,指导他们改进学习方法。帮助他们解决学习中的困难,使他们经过努力,能够达到大纲中规定的基本要求,对学有余力的学生,要通过讲授选学内容和组织课外活动等多种形式,满足他们的学习愿望,发展他们的数学才能。

2、重视改进教学方法,坚持启发式,反对注入式。

教师在课前先布置学生预习,同时要指导学生预习,提出预习要求,并布置与课本内容相关、难度适中的尝试题材由学生课前完成,教学中教师应帮助学生梳理新课知识,指出重点和易错点,解答学生预习时遇到的问题,再设计提高题由学生进行尝试,使学生在学习中体会成功,调动学习积极性,同时也可激励学生自我编题。努力培养学生发现、得出、分析、解决问题的能力,包括将实际问题上升为数学模型的能力,注意激励学生的创新意识。

3、 改革作业结构减轻学生负担。将学生按学习能力分成几个层次,分别布置难、中、浅三个层次作业,使每类学生都能在原有基础上提高。

4、课后辅导实行流动分层。

5、运用新课程标准的理念指导教学,积极更新自己脑海中固有的教育理念,不同的教育理念将带来不同的教育效果。

6、培养学生良好的学习习惯,陶行知说:教育就是培养习惯,有助于学生稳步提高学习成绩,发展学生的'非智力因素,弥补智力上的不足。

7、开展课题的研究,课外调查,操作实践,带动班级学生学习数学,同时发展这一部分学生的特长。

8、进行个别辅导,优生提升能力,扎实打牢基础知识;对学困生,一些关键知识,辅导他们过关,为他们以后的发展铺平道路。

9、培养学生学习数学的良好习惯。

四、教学进度

第一章《三角形的证明》13课时

等腰三角形 4课时

直角三角形 2课时

线段的垂直平分线 2课时

角平分线 2课时

复习小节与检测 3课时

第二章《一元一次不等式和一元一次不等式组》 12课时

不等关系 1课时

不等式的基本性质 1课时

不等式的解集 1课时

一元一次不等式2课时

一元一次不等式与一次函数2课时

一元一次不等式组 2课时

复习小节 与检测 3课时

第三章《图形的平移与旋转》 10课时

图形的平移 3课时

图形的旋转 2 课时

中心对称 1课时

简单的图形设计 1 课时

复习小节与检测 3课时

期中考试复习2 课时

第四章《分解因式》7课时

分解因式1课时

提公因式法 2课时

公式法 2课时

重心 2课时

复习小节与检测 2课时

第五章《分式与分式方程》 11课时

认识分式 2课时

分式的乘除法 1课时

分式的加减法 3课时

分式方程 3课时

复习小节与检测 2课时

第六章《平行四边形》 10课时

平行四边形的性质 2课时

特殊的平行四边形的判定 3课时

三角形的中位线 1课时

多边形的内角和外角和 2课时

复习小节与检测 2课时

八年级的数学教案【第二篇】

学会可化为一元一次方程或一元二次方程的分式方程的解法,会用去分母求方程的解、掌握解分式方程的一般步骤。

去分母法解可化为一元一次方程或一元二次方程的分式方程、验根的方法、

解分式方程的一般步骤。

1、什么叫分式方程?

2、解分式方程的基本思想:

分式方程整式方程。

3、解方程(学生板演)。

1、由上述学生的板演归纳出解分式方程的一般步骤。

(1)去分母:在方程的两边都乘以最简公分母,化为整式方程;

(2)解这个整式方程;

2、范例讲解。

(学生尝试练习后,教师讲评)。

例1:解方程例2:解方程例3:解方程讲评时强调:

1、怎样确定最简公分母?(先将各分母因式分解)。

2、解分式方程的步骤、

巩固练习:p1471t,2t、

课堂小结:解分式方程的一般步骤。

布置作业:见作业本。

八年级的数学教案【第三篇】

在推理判断中得出同底数幂乘法的运算法则,并掌握“法则”的应用.2.过程与方法。

在小组合作交流中,培养协作精神、探究精神,增强学习信心.重、难点与关键。

1.重点:同底数幂乘法运算性质的推导和应用.2.难点:同底数幂的乘法的法则的应用.

一、创设情境,故事引入情境导入。

力一劈,把混沌的宇宙劈成两半,上面是天,下面是地,从此宇宙有了天地之分,盘古完成了这样一个壮举,累死了,他的左眼变成了太阳,右眼变成了月亮,毛发变成了森林和草原,骨头变成了高山和高原,肌肉变成了平原与谷地,血液变成了河流.

八年级的数学教案【第四篇】

一、教材分析:

《正方形》这节课是九年义务教育人教版数学教材八年级下册第十九章第二节的内容。纵观整个初中教材,《正方形》是在学生掌握了平行线、三角形、平行四边形、矩形、菱形等有关知识及简单图形的平移和旋转等平面几何知识,并且具备有初步的观察、操作等活动经验的基础上出现的。既是前面所学知识的延续,又是对平行四边形、菱形、矩形进行综合的不可缺少的重要环节。

本节课的重点是正方形的概念和性质,难点是理解正方形与平行四边形、矩形、菱形之间的内在联系。根据大纲要求,本节课制定了知识、能力、情感三方面的目标。

(一)知识目标:

1、要求学生掌握正方形的概念及性质;

2、能正确运用正方形的性质进行简单的计算、推理、论证;

(二)能力目标:

1、通过本节课培养学生观察、动手、探究、分析、归纳、总结等能力;

2、发展学生合情推理意识,主动探究的习惯,逐步掌握说理的基本方法;

(三)情感目标:

1、让学生树立科学、严谨、理论联系实际的良好学风;

2、培养学生互相帮助、团结协作、相互讨论的团队精神;

3、通过正方形图形的完美性,培养学生品格的完美性。

二、学生分析:

该段学生具有一定的独立思考和探究的能力,但语言表达能力方面稍有欠缺,所以在本节课的教学过程中,特意设计了让学生自己组织语言培养说理能力,让学生们能逐步提高。

三、教法分析:

针对本节课的特点,采用"实践--观察--总结归纳--运用"为主线的教学方法。

通过学生动手,采取几种不同的方法构造出正方形,然后引导学生探究正方形的概念。通过观察、讨论、归纳、总结出正方形性质定理,最后以课堂练习加以巩固定理,并通过一道拔高题对定义、性质理解、巩固加以升华。

四、学法分析:

本节课重点是从培养学生探索精神和分析归纳总结能力为出发点,着重指导学生动手、观察、思考、分析、总结得出结论。在小组讨论中通过互相学习,让学生体验合作学习的乐趣。

五、教学程序:

第一环节:相关知识回顾。

以提问的形式复习的平行四边形、矩形、菱形的定义及性质之后,引导学生发现矩形、菱形的实质是由平行四边形角度、边长的变化得到的。并启发学生考虑,若这两种变化同时发生在平行四边形上,则会得到什么样的图形?让学生们通过手上的学具演示以上两种变化,从而得出结论。

第二环节:新课讲解通过学生们的发现引出课题“正方形”

1、正方形的定义:引导学生说出自己变化出正方形的过程,并再次利用课件形象演示出由平行四边形的边、角的变化演变出正方形的过程。请同学们举手发言,归纳总结出正方形定义:一组邻边相等,且一个角是直角的平行四边形是正方形。再由此定义启发学生们发现正方形的三个必要条件,并且由这三个条件通过重新组合即一组邻边相等与平行四边形组成菱形再加上一个角是直角可得到正方形的另两个定义:一个角是直角的菱形是正方形;一组邻边相等的矩形是正方形。此内容借助课件演示其变化过程,进一步启发学生发现,正方形既是特殊的菱形,又是特殊的矩形,从而总结出正方形的性质。

2、正方形的性质。

定理1:正方形的四个角都是直角,四条边都相等;

定理2:正方形的两条对角线相等,并且互相垂直、平分,每条对角线平分一组对角。

以上是对正方形定义和性质的学习,之后是进行例题讲解。

4、课堂练习:第一部分采用三道有关正方形的周长、面积、对角线、边长计算的填空题,目的是对正方形性质的进一步理解,并考察学生掌握的情况。

第二部分是选择题,通过体现生活中实际问题,来提升学生所学的知识,并加以综合练习,提高他们的综合素质,使他们充分认识到数学实质是来源于生活并要服务于生活。

5、课堂小结:此环节我是通过图框的形式小结正方形和前阶段所学特殊四边形之间的内在联系,通过对所学几种四边形内在联系体现正方形完美的本质,渲染学生们应追求象正方形一样方正的品质,从而要努力学习以丰富的知识充实自己,达到理想中的完美。

6、作业设计:作业是教材159页,第12、14两小道证明题,通过此作业让同学们进一步巩固有关正方形的知识。

八年级的数学教案【第五篇】

调查中,所要考察对象的全体称为总体,而组成总体的每一个考察对象称为个体。

例如,某班10名女生的考试成绩是总体,每一名女生的考试成绩是个体。

从总体中抽取部分个体进行调查,这种调查称为抽样调查,其中从总体中抽取的一部分个体叫做总体的一个样本。

例如,要调查全县农村中学生学生平均每周每人的零花钱数,由于人数较多(一般涉及几万人),我们从中抽取500名学生进行调查,就是抽样调查,这500名学生平均每周每人的零花钱数,就是总体的一个样本。

将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数称为这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数称为这组数据的中位数。

一组数据中出现次数最多的数据就是这组数据的众数。

例如:求一组数据3,2,3,5,3,1的众数。

解:这组数据中3出现3次,2,5,1均出现1次。所以3是这组数据的众数。

又如:求一组数据2,3,5,2,3,6的众数。

解:这组数据中2出现2次,3出现2次,5,6各出现1次。

所以这组数据的众数是2和3。

规律方法小结。

(1)平均数、中位数、众数都是描述一组数据集中趋势的量。

(2)平均数反映一组数据的平均水平,与这组数据中的每个数据都有关,是最为重要的量。

(3)中位数不受个别偏大或偏小数据的影响,当一组数据中的个别数据变动较大时,一般用它来描述集中趋势。

(4)众数只与数据出现的频数有关,不受个别数据影响,有时是我们最为关心的统计数据。

探究交流。

1、一组数据的中位数一定是这组数据中的一个,这句话对吗?为什么?

解析:不对,一组数据的中位数不一定是这组数据中的一个,当这组数据有偶数个时,中位数由中间两个数的平均数决定,若中间两数相等,则这组数据的中位数在这组数据之中,反之,中位数不在这组数据之中。

总结:

(1)中位数在一组数据中是唯一的,可能是这组数据中的一个,也可能不是这组数据中的数据。

(2)求中位数时,先将数据按由小到大的顺序排列(或按由大到小的顺序排列)。若这组数据是奇数个,则最中间的数据是中位数;若这组数据是偶数个,则最中间的两个数据的平均数是中位数。

(3)中位数的单位与数据的单位相同。

(4)中位数与数据排序有关。当一组数据中的个别数据变动较大时,可用中位数来描述这组数据的集中趋势。

课堂检测。

基本概念题。

1、填空题。

(1)数据15,23,17,18,22的平均数是;

(4)为了考察某公园一年中每天进园的人数,在其中的30天里,对进园的人数进行了统计,这个问题中的总体是________,样本是________,个体是________。

基础知识应用题。

2、某公交线路总站设在一居民小区附近,为了了解高峰时段从总站乘车出行的人数,随机抽查了10个班次的乘车人数,结果如下:20,23,26,25,29,28,30,25,21,23。

(1)计算这10个班次乘车人数的平均数;

(2)如果在高峰时段从总站共发车60个班次,根据前面的计算结果,估计在高峰时段从总站乘该路车出行的乘客共有多少。

八年级的数学教案【第六篇】

本节内容的重点是线段垂直平分线定理及其逆定理.定理反映了线段垂直平分线的性质,是证明两条线段相等的依据;逆定理反映了线段垂直平分线的判定,是证明某点在某条直线上及一条直线是已知线段的垂直平分线的依据.

本节内容的难点是定理及逆定理的关系.垂直平分线定理和其逆定理,题设与结论正好相反.学生在应用它们的时候,容易混淆,帮助学生认识定理及其逆定理的区别,这是本节的难点.

本节课教学模式主要采用“学生主体性学习”的教学模式.提出问题让学生想,设计问题让学生做,错误原因让学生说,方法与规律让学生归纳.教师的作用在于组织、点拨、引导,促进学生主动探索,积极思考,大胆想象,总结规律,充分发挥学生的主体作用,让学生真正成为教学活动的主人.具体说明如下:

学生前面,学习过线段垂直平分线的概念,这样由复习概念入手,顺其自然提出问题:在垂直平分线上任取一点p,它到线段两端的距离有何关系?学生会很容易得出“相等”.然后学生完成证明,找一名学生的证明过程,进行投影总结.最后,由学生将上述问题,用文字的形式进行归纳,即得线段垂直平分线定理.这样让学生亲自动手实践,积极参与发现,激发了学生的认识冲突,使学生克服思维和探求的惰性,获得锻炼机会,对定理的产生过程,真正做到心领神会.

线段垂直平分线的定理及逆定理的证明都比较简单,学生学习一般没有什么困难,这一节的难点仍然的定理及逆定理的关系,为了很好的突破这一难点,教学时采用与角的平分线的性质定理和逆定理对照,类比的方法进行教学,使学生进一步认识这两个定理的区别和联系.

八年级的数学教案【第七篇】

认知基础:学生在七年级下册第四章已学习了《变量之间的关系》,对变量间互相依存的关系有了一定的认识,但对于变量间的变化规律尚不明确,理解的很肤浅,也缺乏理论高度,另外本章在认知方式和思维深度上对学生有较高的要求,学生在理解和运用时会有一定的难度。

活动经验基础:在七年级下册《变量之间的关系》一章中,学生接触了大量的生活实例额,体会了变量之间相互依赖关系的普遍性,感受到了学习变量关系的必要性,初步具备了一定的识图能力和主动参与、合作的意识和初步的观察、分析、抽象概括的能力。

知识与技能目标:

(1)初步掌握函数概念,能判断两个变量之间的关系是否可以看作函数。

(2)根据两个变量之间的关系式,给定其中一个变量的值相应的会求出另一个变量的值。

(3)会对一个具体实例进行概括抽象成为函数问题。

过程与方法目标:

(1)通过函数概念初步形成利用函数的观点认识现实世界的意识和能力。

(2)经历具体实例的抽象概括过程,进一步发展学生的抽象思维能力。

情感态度与价值观目标:

(1)经历函数概念的抽象概括过程,体会函数的模型思想。

(2)能主动从事观察、操作、交流、归纳等探索活动,形成自己对数学知识的理解和有效的学习模式。

八年级的数学教案【第八篇】

活动目标:

1、认知目标:理解二等分的含义,学习二等分的方法。

2、操作目标:通过操作探索出不同的方法给图形二等分,体验等分中的包含关系、等量关系。

3、能力目标:探索对不同图形进行二等分。

发散点:

运用不同的等分线对图形进行等分。

活动准备:

正方形彩色纸片若干、多项操作学具、棋盘若干,记录单,剪刀,铅笔、手偶。

活动过程:

(一)等分图形。

1、以情景引入。结合大班幼儿的年龄特点,创设了这个问题情境,吸引幼儿参与活动的同时,也能够更加生活化地展现生活的数学,更加易于幼儿的理解。

(1)出示手偶:“你们看谁来了?”幼儿:“是平平姐姐。”

(2)以手偶表演,教师问:“平平姐姐今天怎么不高兴了,有什么烦恼吗?”平平(教师扮):“今天早上吃早点,我发现只有一片面包片了,可是我要和盈盈一起来分享,小朋友,你们快帮我想想我该怎么办呢?”

(3)师:“谁想到好办法了?”幼儿:“把面包片分成两份不就行了吗!”

(4)平平(教师扮):“可是分完了会有大有小,怎么办?”

(5)教师出示正方形的彩色纸片,提问:“面包片是什么形状的?”幼儿:“正方形的。”教师:“那我们就用正方形的纸来代替面包片帮平平姐姐来分成两块一样大的!”

2、提供幼儿正方形纸和剪刀,请幼儿操作。提供给幼儿尝试的机会,验证自己的想法,并可以不受限制地尝试各种二等分的方法,用剪刀将其剪开的方法便于幼儿验证两部分是否相等。

3、小结:

(1)师:“你把正方形分成了几块什么形状,你是怎样分的?”

(2)师:“有几种分的方法”(对角和对边折)。

(3)师:“怎样证明这两块一样大呢?”(比一比)。

(4)师:“怎样分才能一样大呢?”

(5)教师于幼儿共同总结:只要找到了中心线,就可以将一个分成两个一样大的。进一步引导幼儿掌握二等分的关键要点。

(二)运用学具进一步探索。只用纸来等分,以现阶段幼儿的年龄特点所致,比较精确的二等分方法只有对角和对边折两种,运用学具,抓住学具有洞洞点的特点,可以让幼儿进一步尝试以各种折线为中心线进行正方形的二等分,并且能够保证精确性。促进幼儿发散性思维的发展,是幼儿在明确等分要求的.基础上自由地尝试二等分的多种方法。此环节更加注重幼儿的创造性和独特性,同时渗透了做一件事情可以有多种方法解决的道理。

1、师:“你们用了两种办法,还有没有更多的方法呢?”

2、请幼儿运用学具进行尝试,并准确找到不同形状的中心线,探索检验的方法。检验能够证明所分的两部分是一样大的,检验的方法并不是单一的,为幼儿投放了与一块学具板相同的作业单的目的就是能够在记录等分方法的同时,还可以剪开记录后的作业单进行比较证明。除此方法还可以比较等分线两侧的洞洞子每排数量是否相同等方法。

3、幼儿分组操作,教师针对寻找不同的中心线以及检查的办法进行指导,并引导幼儿记录、检验。

4、小结:展示幼儿作业单,谁来说一说你用了什么方法进行了等分,你是怎样指导它们是一样大的。请幼儿将有创新的分法介绍给其他的幼儿,并展示不同检验相等的方法。让幼儿能够有交流展示的机会,并且结合大班幼儿集体学习的特点,鼓励幼儿创新。

35 1833765
");