高二重要数学公式总结精编3篇
【路引】由阿拉题库网美丽的网友为您整理分享的“高二重要数学公式总结精编3篇”文档资料,以供您学习参考之用,希望这篇范文对您有所帮助,喜欢就复制下载支持吧!
高中数学三角函数公式1
锐角三角函数公式
sin α=∠α的对边 / 斜边
cos α=∠α的邻边 / 斜边
tan α=∠α的对边 / ∠α的。邻边
cot α=∠α的邻边 / ∠α的对边
倍角公式
Sin2A=2SinA?CosA
Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1
tan2A=(2tanA)/(1-tanA^2)
(注:SinA^2 是sinA的平方 sin2(A) )
三倍角公式
sin3α=4sinα·sin(π/3+α)sin(π/3-α)
cos3α=4cosα·cos(π/3+α)cos(π/3-α)
tan3a = tan a · tan(π/3+a)· tan(π/3-a)
三倍角公式推导
sin3a
=sin(2a+a)
=sin2acosa+cos2asina
辅助角公式
Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中
sint=B/(A^2+B^2)^(1/2)
cost=A/(A^2+B^2)^(1/2)
tant=B/A
Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B
降幂公式
sin^2(α)=(1-cos(2α))/2=versin(2α)/2
cos^2(α)=(1+cos(2α))/2=covers(2α)/2
tan^2(α)=(1-cos(2α))/(1+cos(2α))
以上就是差异网为大家整理的3篇《高二重要数学公式总结》,希望可以对您的写作有一定的参考作用。
高二数学排列公式2
1、排列及计算公式
从n个不同元素中,任取m(mn)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(mn)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m)表示。
p(n,m)=n(n-1)(n-2)(n-m+1)=n!/(n-m)!(规定0!=1)。
2、组合及计算公式
从n个不同元素中,任取m(mn)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(mn)个元素的所有组合的'个数,叫做从n个不同元素中取出m个元素的组合数。用符号
c(n,m)表示。
c(n,m)=p(n,m)/m!=n!/((n-m)!_m!);c(n,m)=c(n,n-m);
3、其他排列与组合公式
从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!。
n个元素被分成k类,每类的个数分别是n1,n2,。.。nk这n个元素的全排列数为
n!/(n1!_n2!_.。._nk!)。
k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m)。
排列(Pnm(n为下标,m为上标))
Pnm=n(n-1)。.。.(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标)=n!;0!=1;Pn1(n为下标1为上标)=n
组合(Cnm(n为下标,m为上标))
Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标)=1;Cn1(n为下标1为上标)=n;Cnm=Cnn-m
高二数学向量公式3
1、单位向量:单位向量a0=向量a/|向量a|
(x,y) 那么 向量OP=x向量i+y向量j|向量OP|=根号(x平方+y平方)
(x1,y1) P2(x2,y2)那么向量P1P2={x2-x1,y2-y1}|向量P1P2|=根号[(x2-x1)平方+(y2-y1)平方]
4、向量a={x1,x2}向量b={x2,y2}
向量a_向量b=|向量a|_|向量b|_Cos=x1x2+y1y2Cos=向量a_向量b/|向量a|_|向量b|(x1x2+y1y2)=根号(x1平方+y1平方)_根号(x2平方+y2平方)
5、空间向量:同上推论(提示:向量a={x,y,z})
6、充要条件:如果向量a向量b那么向量a_向量b=0如果向量a//向量b那么向量a_向量b=|向量a|_|向量b|或者x1/x2=y1/y2
7、|向量a向量b|平方=|向量a|平方+|向量b|平方2向量a_向量b=(向量a向量b)平方
上一篇:科室工作总结范文(优推4篇)