高中数学公式总结(实用5篇)

网友 分享 时间:

【路引】由阿拉题库网美丽的网友为您整理分享的“高中数学公式总结(实用5篇)”文档资料,以供您学习参考之用,希望这篇范文对您有所帮助,喜欢就复制下载支持吧!

高三数学公式总结1

⑴集合与简易逻辑:集合的概念与运算、简易逻辑、充要条件

⑵函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与指数函数、对数与对数函数、函数的应用

⑶数列:数列的有关概念、等差数列、等比数列、数列求和、数列的应用

⑷三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用

⑸平面向量:有关概念与初等运算、坐标运算、数量积及其应用

⑹不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式、不等式的应用

⑺直线和圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系

⑻圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用

⑽排列、组合和概率:排列、组合应用题、二项式定理及其应用

⑾概率与统计:概率、分布列、期望、方差、抽样、正态分布

⑿导数:导数的概念、求导、导数的应用

⒀复数:复数的概念与运算

以上就是差异网为大家整理的5篇《高中数学公式总结》,希望可以启发您的一些写作思路,更多实用的范文样本、模板格式尽在差异网。

高三数学公式总结2

一、对数函数

(MN)=logaM+logN

loga(M/N)=logaM-logaN

logaM^n=nlogaM(n=R)

logbN=logaN/logab(a>0,b>0,N>0 a、b均不等于1)

二、简单几何体的面积与体积

S直棱柱侧=c*h(底面周长乘以高)

S正棱椎侧=1/2*c*h′(底面的周长和斜高的一半)

设正棱台上、下底面的周长分别为c′,c,斜高为h′,S=1/2*(c+c′)*h

S圆柱侧=c*l

S圆台侧=1/2*(c+c′)*l=兀*(r+r′)*l

S圆锥侧=1/2*c*l=兀*r*l

S球=4*兀*R^3

V柱体=S*h

V锥体=(1/3)*S*h

V球=(4/3)*兀*R^3

三、两直线的位置关系及距离公式

(1)数轴上两点间的距离公式|AB|=|x2-x1|

(2) 平面上两点A(x1,y1),(x2,y2)间的距离公式

|AB|=sqr[(x2-x1)^2+(y2-y1)^2]

(3) 点P(x0,y0)到直线l:Ax+By+C=0的距离公式 d=|Ax0+By0+C|/sqr

(A^2+B^2)

(4) 两平行直线l1:=Ax+By+C=0,l2=Ax+By+C2=0之间的距离d=|C1-

C2|/sqr(A^2+B^2)

同角三角函数的基本关系及诱导公式

sin(2*k*兀+a)=sin(a)

cos(2*k*兀+a)=cosa

tan(2*兀+a)=tana

sin(-a)=-sina,cos(-a)=cosa,tan(-a)=-tana

sin(2*兀-a)=-sina,cos(2*兀-a)=cosa,tan(2*兀-a)=-tana

sin(兀+a)=-sina

sin(兀-a)=sina

cos(兀+a)=-cosa

cos(兀-a)=-cosa

tan(兀+a)=tana

四、二倍角公式及其变形使用

1、二倍角公式

sin2a=2*sina*cosa

cos2a=(cosa)^2-(sina)^2=2*(cosa)^2-1=1-2*(sina)^2

tan2a=(2*tana)/[1-(tana)^2]

2、二倍角公式的变形

(cosa)^2=(1+cos2a)/2

(sina)^2=(1-cos2a)/2

tan(a/2)=sina/(1+cosa)=(1-cosa)/sina

五、正弦定理和余弦定理

正弦定理:

a/sinA=b/sinB=c/sinC

余弦定理:

a^2=b^2+c^2-2bccosA

b^2=a^2+c^2-2accosB

c^2=a^2+b^2-2abcosC

cosA=(b^2+c^2-a^2)/2bc

cosB=(a^2+c^2-b^2)/2ac

cosC=(a^2+b^2-c^2)/2ab

tan(兀-a)=-tana

sin(兀/2+a)=cosa

sin(兀/2-a)=cosa

cos(兀/2+a)=-sina

cos(兀/2-a)=sina

tan(兀/2+a)=-cota

tan(兀/2-a)=cota

(sina)^2+(cosa)^2=1

sina/cosa=tana

两角和与差的余弦公式

cos(a-b)=cosa*cosb+sina*sinb

cos(a-b)=cosa*cosb-sina*sinb

两角和与差的正弦公式

sin(a+b)=sina*cosb+cosa*sinb

sin(a-b)=sina*cosb-cosa*sinb

两角和与差的正切公式

tan(a+b)=(tana+tanb)/(1-tana*tanb)

tan(a-b)=(tana-tanb)/(1+tana*tanb)

拓展阅读:高三如何恶补数学?这三个学霸的答案有上万人点赞!

还有一个月高考了,数学成绩只有四五十分,其他科都还行,如果数学成绩能达到120,一本应该没问题了,数学一直不知道该怎样学,数学公式背完之后该怎样去复习,能提高到120吗?该怎样复习?希望大家给个建议或者制定个计划。

要学会放弃

作为大二数学系的学长,我想告诉你。

第一,学会放弃。

我当时高考是150分,10道选择,5道填空,6个大题。

要明白大多数人是不需要做完所有的题,只要把简单题做对,中档题做好,难题可狂草,分一般不低,前8个选择,前3个填空,前4个大题做全对就已经能拿到大概100分了,再加最后两个选择可能猜对1个吧,填空能蒙对一个吧,最后两个大题动个问吧,110+是妥妥的。

不要再做那些难题,偏题,怪题了,没用。回归教材,抓住基础才是王 差异网…道。

第二,摆正心态。

如果你不是追求清华北大上交复旦这样的国内顶尖大学,或许现在的学校排名参照往年没有达到那类学校的高度,那么还是静下心来钻基础吧,答主高考之前一直面对我只是普通一本的成绩妄想考人大,大把时间做难题,结果高考卷子下来题目爆简单,同考室还有提前半小时交卷的~~

一不小心做得对的题粗心做错结果优势科目的数学只有120多,就加上惨不忍睹的英语,来到了现在这个学校,数学单科还没有我们班上那些我平时甩几十分的人高,所以说还是回归基础吧!

第三,善于总结。

前面的同志们都总结了许多方法了,我也不再赘述。对于基础题一定要“会一道题,会一类题”。

第四,合理安排。

各科还是都要学一学,不能偏科啊!答主就输在了英语在高中几乎完全不学,眼看着高二和我同在60分徘徊的同桌,在高三一年达到了120,而我还在60,这在数学简单的那年简直就是噩耗!最后别人上了某985,,说多了都是泪。所以说不要自己那科差就不学,前车之鉴。

最后,肚里有货,心中不慌,认真学习才是王道,在老师的指引下(必须的!)做好该做的'学习任务,成绩提高时一定的,考试毕竟是考试,还得靠些运气不是?仰望星空与脚踏实地,有目标才可能实现。认真你可能输,但是你不认真,连输的机会都没有。祝你高考成功。

不推荐刷题

首先,做题是必须的,但不推荐刷题,高考是全面性的考试,花大量时间刷数学题会影响其他学科的复习,当然你其他学科都非常牛逼的当我没说。

至于数学,首先要看书,书上的公式,例题,习题都会不会,这是一切的基础,书上的公式都不记得,做题肯定没办法啊。

然后,认真对待每一次考试,高三应该会有很多次考试,每一次考完都要认真分析试卷,哪一题是不会的,哪一题是马虎而错的,做好记号,上课讲试卷时认真听,记下每个题的知识点,但是不要记答案,下课了找个本子,自己再重新改错,如果还是不会就去问,一定要所有题的改错都是自己思考后一步一步写下来的。

至于分析试卷,其实不必找什么网上的人,把自己考试的卷子全部拿出来,如果上面的你都做了,看着记号,很快就能整理出自己的弱点,然后还是看书,找出不清楚的,再看改错本,每一步的思路要在脑中分析,重要的要记下来,思维的过程要慢慢养成。

至于压轴题,我不清楚大家那边的卷子是什么情况,但是每次考试都

一定要做!

一定要做!

一定要做!

不是要让你一定做对,而是要把压轴题的时间算在考试中。一般选择填空各一道比较难的,大题最后两道比较难。选择填空的难题要控制时间,时间内能写就写,写不出来先蒙一个。倒数第二道大题,如果题主从现在开始坚持改错,再附加一些练习,应该问题不大,最后一道题,能写多少写多少,一般第一问都是送分的。记住,没办法写完整,但是过程也是分啊!

总之,难度不是很大的大概100到110分左右(我是湖北的,大概是这么多,但是能保证全拿到的每次考试都不会很多),压轴题是能写多少写多少。

准备改错本,分析错题知识点,课后自己改错,每一段时间把这段时间的试卷拿出来看看,再稍加一点课外练习(主要是高考真题),不要在偏题怪题上钻牛角尖,大概就是这样,要坚持下来!

还有,不要检查,要的是一次做对,高考不会有什么时间检查的!

写的比较凌乱,希望有帮助,重要的是坚持,多和老师交流,不要害怕老师,老师教那么多年书,肯定比我们有经验的!

最后祝童鞋们一切顺利,考出好成绩!

高三数学公式总结3

阶乘(factorial)是基斯顿·卡曼(Christian Kramp, 1760 – 1826)于1808年发明的运算符号。阶乘,也是数学里的一种术语。阶乘只有计算方法,没有简便公式的,只能硬算。

例如所要求的数是4,则阶乘式是1×2×3×4,得到的积是24,24就是4的阶乘。 例如所要求的数是6,则阶乘式是1×2×3×……×6,得到的积是720,720就是6的阶乘。例如所要求的数是n,则阶乘式是1×2×3×……×n,设得到的积是x,x就是n的阶乘。

任何大于1的自然数n阶乘表示方法:

n!=1×2×3×……×n

n!=n×(n-1)!

n的双阶乘:

当n为奇数时表示不大于n的所有奇数的乘积

如:7!!=1×3×5×7

当n为偶数时表示不大于n的所有偶数的乘积(除0外)

如:8!!=2×4×6×8

小于0的整数-n的阶乘表示:

(-n)!= 1 / (n+1)!

以下列出0至20的阶乘:

0!=1,注意(0的阶乘是存在的)

1!=1,

2!=2,

3!=6,

4!=24,

5!=120,

6!=720,

7!=5,040,

8!=40,320

9!=362,880

10!=3,628,800

11!=39,916,800

12!=479,001,600

13!=6,227,020,800

14!=87,178,291,200

15!=1,307,674,368,000

16!=20,922,789,888,000

17!=355,687,428,096,000

18!=6,402,373,705,728,000

19!=121,645,100,408,832,000

20!=2,432,902,008,176,640,000

另外,数学家定义,0!=1,所以0!=1!

高三数学公式总结4

=c(c为常数) y=0

=x^n y=nx^(n-1)

=a^x y=a^xlna

y=e^x y=e^x

=logax y=logae/x

y=lnx y=1/x

=sinx y=cosx

=cosx y=-sinx

=tanx y=1/cos^2x

=cotx y=-1/sin^2x

=arcsinx y=1/√1-x^2

=arccosx y=-1/√1-x^2

=arctanx y=1/1+x^2

=arccotx y=-1/1+x^2

高三数学公式总结5

两角和公式

sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)

ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

倍角公式

tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctga

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

半角公式

sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))

ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))

和差化积

2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosB

ctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB

35 133467
");