初一数学下教案【实用8篇】

网友 分享 时间:

【参照】优秀的范文能大大的缩减您写作的时间,以下优秀范例“初一数学下教案【实用8篇】”由阿拉漂亮的网友为您精心收集分享,供您参考写作之用,希望下面内容对您有所帮助,喜欢就复制下载吧!

初一数学下教案【第一篇】

借助“线段图”分析复杂的行程问题中的数量关系,从而建立方程解决实际问题,发展分析问题,解决问题的能力,进一步体会方程模型的作用。

重点、难点。

1.重点:列一元一次方程解决有关行程问题。

2.难点:间接设未知数。

1.列一元一次方程解应用题的一般步骤和方法是什么?

2.行程问题中的基本数量关系是什么?

路程=速度×时间速度=路程/时间。

画“线段图”分析,若直接设元,设小张家到火车站的路程为x千米。

1.坐公共汽车行了多少路程?乘的士行了多少路程?

2.乘公共汽车用了多少时间,乘出租车用了多少时间?

3.如果都乘公共汽车到火车站要多少时间?

4,等量关系是什么?

如果设乘公共汽车行了x千米,则出租车行驶了2x千米。小张家到火车站的路程为3x千米,那么也可列出方程。

可设公共汽车从小张家到火车站要x小时。

设未知数的方法不同,所列方程的.复杂程度一般也不同,因此在设未知数时要有所选择。

教科书第17页练习1、2。

有关行程问题的应用题常见的一个数量关系:路程=速度×时间,以及由此导出的其他关系。如何选择设未知数使方程较为简单呢?关键是找出较简捷地反映题目全部含义的等量关系,根据这个等量关系确定怎样设未知数。

教科书习题,第1至5题。

初一数学下教案【第二篇】

重点:初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数.

难点:正确理解有理数与数轴上点的对应关系.

1.小学里曾用“射线”上的点来表示数,你能在射线上表示出1和2吗?

2.用“射线”能不能表示有理数?为什么?

3.你认为把“射线”做怎样的改动,才能用来表示有理数呢?

待学生回答后,教师指出,这就是我们本节课所要学习的内容――数轴.

与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.具体方法如下(边说边画):

提问:我们能不能用这条直线表示任何有理数?(可列举几个数)

在此基础上,给出数轴的定义,即规定了原点、正方向和单位长度的直线叫做数轴.

通过上述提问,向学生指出:数轴的三要素――原点、正方向和单位长度,缺一不可.

例1画一个数轴,并在数轴上画出表示下列各数的点:

例2指出数轴上a,b,c,d,e各点分别表示什么数.

课堂练习

示出来.

2.说出下面数轴上a,b,c,d,o,m各点表示什么数?

1.在下面数轴上:

(1)分别指出表示-2,3,-4,0,1各数的点.

(2)a,h,d,e,o各点分别表示什么数?

2.在下面数轴上,a,b,c,d各点分别表示什么数?

3.下列各小题先分别画出数轴,然后在数轴上画出表示大括号内的一组数的点:

(1){-5,2,-1,-3,0}; (2){-4,,-,};

初一数学下教案【第三篇】

1.通过七巧板的制作,拼摆等活动,进一步丰富对平行,垂直及角等有关内容的认识,积累数学活动经验。

2.能用适当的图形和语言表示自己的思考结果。

本堂内容的重点是七巧板的制作和拼摆,难点是拼图所要表现的几何图形,对已学过的平行,垂直及角等有关内容的有机联系和语言表达。

引导活动讨论

引导:意在教师讲解七巧板的历史,七巧板制作的方法。

活动:人人参与制作七巧板,拼摆七巧板的图案。

讨论:对自己所拼摆的图形与同伴交流,与全班同学交流(利用多媒体工具)与老师进行交流。

启发式教学

先用多媒体显示各种已拼摆好的动物,交通工具,植物等等然后介绍它是由怎样的一副拼板拼摆而成的(不一定要七巧板)。紧接着就介绍七巧板的历史,制作方法,让学生制作一副七巧板,并涂上不同的颜色。

利用所做的七巧板拼出两个不同的图案,并与同伴交流,与全班同学交流,与老师交流。

(1) 你的拼图用了什么形状的板?你想表现什么?

(2) 在你的拼出的图案中,指出三组互相平行或垂直的线段,并将它们间的关系表示出来。

(3) 在你拼出的图案中,找出一个锐角、一个直角、一个钝角,并将它们表示出来,它们分别是多少度。

通过学生的展示,教师作适时的评价,树立榜样,培养学生之间的竞争意识。

介绍老师制作的3副游戏板,并用多媒体显示十几种的拼摆图案,通过生动有趣的图案,激发学生的创造欲望,提出你还有材料吗?有信心凭自己的智慧制作一副游戏板吗?意在充分发挥学生的创造能力、想象能力、合作交流能力(可由附近的同学四人小组制作完成)。

由四人小组制作的游戏板,拼摆二个不同图案,利用多媒体,展示给全体同学,用语言表示拼图所表现的内容,与所学的知识的联系,呈现平行,垂直及角的有关知识。

通过制作七巧板及游戏板进一步学会了画平行线段、垂线段、找线段中点的方法,通过拼摆丰富了对平行、垂直及角等有关内容的认识,积累数学活动的经验,提高了空间观念和观察、分析、概括表达的能力。

利用20cm20cm的硬纸板做一副游戏板,利用它拼出5个自己喜欢的图案,并把它画下来,布置教室的环境。

(一)知识回顾 (三)例题解析 (五)课堂小结

(二)观察发现 (四)课堂练习 练习设计

初一数学下教案【第四篇】

教学目标:了解总体、个体、样本及样本容的概念以及抽样调查的意义,明确在什么情况下采用抽样调查或全面调查,进一步熟悉对数据的收集、整理、描述和分析。

教学重点:对概念的理解及对数据收集整理。

教学难点:总体概念的理解和随机抽样的合理性。

教学过程:

一、情景创设,引入新课。

二、新课。

1.抽样调查的意义。

在上述问题中,由于学生人数比较多,全面调查花费的时间长,消耗的人力、物力大,因此需要寻求既省时又省力又能解决问题的方法,这就是抽样调查。

抽样调查:抽取一部分对象进行调查的方法,叫抽样调查。

2.总体、个体、样本、样本容量的意义。

总体:所要考察对象的全体。

个体:总体的每一个考察对象叫个体。

样本:抽取的部分个体叫做一个样本。

样本容量:样本中个体的数目。

3.抽样的注意事项。

下面是某同学抽取样本数量为100的调查节目统计表:

表中的数据信息也可以用条形统计图或扇形统计图来描述。

初一数学下教案【第五篇】

通过有序数对确定位置,让学生感受二维空间观,发展符号感及抽象思维能力,让学生体会 具体-抽象-具体的数学学习过程。

有序数对的概念及平面内确定点的方法

[引例1]小明买了一张8排6号的电影票,怎样才能既快又准地找到座位呢?

[引例2]规定竖为列,横为排,如果我的朋友在第3列,你能知道他(她)是谁吗?

如果说我的朋友在第3列,第2排,那么你知道他(她)是谁吗?

归纳8排6座、第3列,第2排共同点:用两个数表示位置。

约定:影院座位,排数在前,座数在后;教室座位列数在前,排数在后。则上述位置可简记为(8,6),(3,2)。

介绍:像(8,6)、(3,2)这种用括号括起来的一对数我们把它叫做数对。

可以发现,有顺序的两个数a与b组成的数对,如果约定了前面的数表示列数,后面的数表示排数,那么a与b组成的数对就表示一个确定的位置。

引入课题有序数对

由上述问题直接引出概念

有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记作(a,b)。

请思考:我们为什么要学习有序数对,有序数对都有哪些用途?

[探究1]请学生结合实际的教室座位 若位置记法为(列数,排数)

(1)请问(5,4)和(4,5)表示的是哪个同学的座位?

(2)游戏:教师说出一组数对相应的学生立即站起来。

(3)思考:(3,4)和(4,3)指的是不是同一位置?

[讨论]利用有序数对,能够准确地表示一个位置,生活中利用有序数对表示位置的情况很常见,如人们常用经纬度来表示地球上的地点等。(展示课件)

小明是朝阳实验学校刚入学的初一新生,他为了尽快熟悉学校,请高年级同学为他画了学校的平面示意图。如果用(2,4)表示图上校门的位置,那么花坛图书馆、体育馆、教学楼的位置分别可以表示成什么?(课件展示地图)

解:花坛(4,6),图书馆(5,0),体育馆(9,6),教学楼(10,3)

知识点:有序数对

有顺序的两个数a与b组成的数对叫做有序数对,记作(a,b)。

注意点:(a,b)与(b,a)表示的是两个不同的位置。

主要方法:利用有序数对可以确定平面内点的位置,如根据数对画图形。反之,也可点的位置转化为有序数对,如经纬网的使用。有序数对与点的位置实现了简单的数形结合。

小王初到某个公司,你有什么办法让他比较容易地找到图上的几处场所。

自由设计 二选一

1、 在方格纸上设计一个用有序数对描述的图形。

2、设计一个游戏,如解密游戏、迷宫游戏等。

七年级学生的好奇心较重,学习主动性不够,主要是靠自己的兴趣而学习。因此,我从学生的特点出发,明确了以学生为中心,利用适合学生年龄特点的方式来引导教学的各个环节;本节课采用多媒体辅助教学,一方面能生动清楚的反映图形,增加课堂的容量,同时有利于突出重点, 增强教学条理性,形象性,更好的提高课堂效率.

初一数学下教案【第六篇】

1.进一步熟练掌握有理数加法的法则。

2.掌握有理数加法的运算律,并能运用加法运算律简化运算。

启发引导式教学,能够由特殊到一般、由一般到特殊,体会研究数学的一些基本方法。

1.培养学生的分类与归纳能力。

2.强化学生的数形结合思想。

3.提高学生的自学以及理解能力,激发学生学习数学的兴趣。

加法运算律的灵活运用,解决实际问题。

能运用加法运算律简化运算,加法在实际中的应用。

采取启发式教学法及情感教学,引导学生主动思考,主动探索。用大量的实例让学生得出规律。

1.复习有理数的加法法则:

(1)同号两数相加,取相同的`符号,并把绝对值相加。

(2)异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

(3)一个数同0相加,仍得这个数。

2.口算:7+(-5)(-5)+(-4)(-10)+0(-8)+8。

(一)情境引入,提出问题:

鼓励学生通过自己的探索,交流、归纳,自主得出有理数加法的运算律。

1.叙述有理数的加法法则.

2.小学学过的加法的运算律是不是也可以扩充到有理数范围?

3.计算下列各组数的值,并观察寻找规律。

(1)(-7)+(-5)(-5)+(-7)。

(2)[8+(-5)]+(-4)8+[(-5)+(-4)]。

(3)[(-7)+(-10)]+(-11);(-7)+[(-10)+(-11)]。

结论:在有理数运算中,加法交换律、结合律仍然成立。

(二)活动探究,猜想结论:

交换律——两个有理数相加,交换加数的位置,和不变.

用代数式表示:a+b=b+a。

运算律式子中的字母a、b表示任意的一个有理数,可以是正数,也可以是负数或者零.

在同一个式子中,同一个字母表示同一个数.

结合律——三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.

用代数式表示:(a+b)+c=a+(b+c)。

这里a、b、c表示任意三个有理数.

(三)验证结论:

例1计算16+(-25)+24+(-32)。

(引导学生发现,在本例中,把正数与负数分别结合在一起再相加,计算就比较简便)。

解:16+(-25)+24+(-32)。

=[16+24]+[(-25)+(-32)](加法结合律)。

=40+(-57)(同号相加法则)。

=-17(异号相加法则)。

例2计算:31+(-28)+28+69。

(引导学生发现,在本例中,把互为相反数的两个数相加得0,计算比较简便)。

解:31+(-28)+28+69。

=31+69+[(-28)+28]。

=100+0。

=100。

3.若两个有理数的和为负数,那么这两个有理数()。

a.一定都是负数b.一正一负,且负数的绝对值大。

c.一个为零,另一个为负数d.至少有一个是负数。

4.两个有理数的和()。

a.一定大于其中的一个加数。

b.一定小于其中的一个加数。

c.和的大小由两个加数的符号而定。

d.和的大小由两个加数的符号与绝对值而定。

5.如果a,b是有理数,那么下列各式中成立的是()。

a.如果a0,b0,那么a+b0。

b.如果a0,b0,那么a+b0。

c.如果a0,b0,那么a+b0。

d.如果a0,b0,且|a||b|,那么a+b0。

7.张大伯共有7块麦田,今年的收成与去年相比(增产为正,减产为负)情况如下(单位:kg):+320,-170,-320,+130,+150,+40,-150.则今年小麦的总产量与去年相比()。

a.增产20kgb.减产20kgc.增长120kgd.持平。

初一数学下教案【第七篇】

掌握去分母解方程的方法,体会到转化的思想。对于求解较复杂的方程,注意培养学生自觉反思求解的过程和自觉检验方程的解是否正确的良好习惯。

重点、难点。

1、重点:掌握去分母解方程的方法。

2、难点:求各分母的最小公倍数,去分母时,有时要添括号。

教学过程。

一、复习提问。

1.去括号和添括号法则。

2.求几个数的最小公倍数的方法。

二、新授。

例1:解方程(见课本)。

解一元一次方程有哪些步骤?

一般要通过去分母,去括号,移项,合并同类项,未知数的系数化为1等步骤,把一个一元一次方程“转化”成x=a的形式。解题时,要灵活运用这些步骤。

补充例:解方程(x+15)=-(x-7)。

三、巩固练习。

教科书第10页,练习1、2。

四、小结。

1.解一元一次方程有哪些步骤?

2.掌握移项要变号,去分母时,方程两边每一项都要乘各分母的最小公倍数,切勿漏乘不含有分母的项,另外分数线有两层意义,一方面它是除号,另一方面它又代表着括号,所以在去分母时,应该将分子用括号括上。

五、作业。

教科书第13页习题,2第2题。

初一数学下教案【第八篇】

1.重点:

(1)了解多边形及其有关概念,理解正多边形及其有关概念.

(2)区别凸多边形和凹多边形.

2.难点:

多边形定义的准确理解.

一、新课讲授

投影:图形见课本p84图7.3一l.

你能从投影里找出几个由一些线段围成的图形吗?

上面三图中让同学边看、边议.

在同学议论的基础上,老师给以总结,这些线段围成的图形有何特性?

(1)它们在同一平面内.

(2)它们是由不在同一条直线上的几条线段首尾顺次相接组成的.

这些图形中有三角形、四边形、五边形、六边形、八边形,那么什么叫做多边形呢?

提问:三角形的定义.

你能仿照三角形的定义给多边形定义吗?

1.在平面内,由一些线段首位顺次相接组成的图形叫做多边形.

如果一个多边形由n条线段组成,那么这个多边形叫做n边形.(一个多边形由几条线段组成,就叫做几边形.)

2.多边形的边、顶点、内角和外角.

3.多边形的对角线

连接多边形的不相邻的两个顶点的线段,叫做多边形的对角线.

让学生画出五边形的所有对角线.

4.凸多边形与凹多边形

看投影:图形见课本p85.7.3―6.

5.正多边形

由正方形的特征出发,得出正多边形的概念.

各个角都相等,各条边都相等的多边形叫做正多边形.

二、课堂练习

课本p86练习1.2.

三、课堂小结

引导学生总结本节课的相关概念.

四、课后作业

课本p90第1题.

备用题:

一、判断题.

1.由四条线段首尾顺次相接组成的图形叫四边形.()

2.由不在一直线上四条线段首尾次顺次相接组成的图形叫四边形.()

3.由不在一直线上四条线段首尾顺次接组成的图形,且其中任何一条线段所在的直线、使整个图形都在这直线的同一侧,叫做四边形.()

4.在同一平面内,四条线段首尾顺次连接组成的图形叫四边形.()

二、填空题.

1.连接多边形的线段,叫做多边形的对角线.

2.多边形的任何整个多边形都在这条直线的,这样的多边形叫凸多边形.

3.各个角,各条边的多边形,叫正多边形.

三、解答题.

1.画出图(1)中的六边形abcdef的所有对角线.

47 1679843
");