最新心得体会大数据模板【优质5篇】

网友 分享 时间:

大数据时代,信息量激增,推动各行业变革。通过数据分析,洞察趋势与规律,提升决策效率,促进创新与发展,塑造未来社会。下面是阿拉网友收集整理的最新心得体会大数据模板【优质5篇】优秀范例,欢迎阅读参考,喜欢就支持吧!

心得体会大数据【第一篇】

在《大数据时代》一书中,大数据时代与小数据时代的区别:1、思维惯例。大数据时代区别与转变就是,放弃对因果关系的渴求,而取而代之关注相关关系。也就是说只要知道“是什么”,而不需要知道“为什么”。作者语言绝对,却反思其本质区别。数据的更多、更杂,导致应用主意只能尽量观察,而不是倾其所有进行推理?这也是明智之举2、使用用途。小数据停留在说明过去,大数据用驱动过去来预测未来。笔者认为数据的用途意在何为,与数据本身无关,而与数据的解读者有关,而相关关系更有利于预测未来。3、结构。大数据更多的体现在海量非结构化数据本身与处理方法的整合。大数据更像是理论与现实齐头并进,理论来创立处理非结构化数据的方法,处理结果与未来进行验证。4、分析基础。大数据是在互联网背景下数据从量变到质变的过程。笔者认为,小数据时代也即是信息时代,是大数据时代的前提,大数据时代是升华和进化,本质是相辅相成,而并非相离互斥。

数据未来的故事。数据的发展,给我们带来什么预期和启示?银行业天然有大数据的潜质。客户数据、交易数据、管理数据等海量数据不断增长,海量机遇和挑战也随之而来,适应变革,适者生存。我们可以有更广阔的业务发展空间、可以有更精准的决策判断能力、可以有更优秀的经营管理能力??可以这些都基于数据的收集、整理、驾驭、分析能力,基于脱颖而出的创新思维和执行。因此,建设“数据仓库”,培养“数据思维”,养成“数据治理”,创造“数据融合”,实现“数据应用”才能拥抱“大数据”时代,从数据中攫取价值,笑看风云变换,稳健赢取未来。

心得体会大数据【第二篇】

随着科技的不断发展,大数据已经成为了一个被广泛应用于各个领域的重要工具。在大数据时代,越来越多的企业开始意识到了大数据所蕴含的巨大商业价值,并且积极地进行创新实践。在我参与的一次大数据创新项目中,我深切地体会到了大数据的创新力量,并从中得出了一些有价值的经验和教训。

首先,对于大数据的应用来说,数据的质量至关重要。在我们的项目中,我们需要收集大量的用户数据来进行分析和模型建立。然而,我们发现很多数据都存在着质量问题,包括数据重复、数据格式不规范等。因此,我们花了大量的时间和精力来清洗和处理这些数据。这次经历让我深刻认识到,数据质量对于大数据的应用至关重要。只有保证数据的准确性和完整性,才能得出准确和可靠的结论。

其次,大数据分析需要合适的工具和技术支持。在我们的项目中,我们使用了一款强大的大数据分析平台来处理和分析海量数据。这款平台提供了丰富的工具和算法,使我们能够更加高效地进行数据挖掘和模型构建。我们还采用了一些先进的技术,如机器学习和人工智能,来进一步优化数据分析的效果。通过这次实践,我深深地认识到,合适的工具和技术支持对于大数据分析的成功至关重要。

然后,为了更好地发挥大数据的创新力量,我们需要加强团队合作和跨界融合。在我们的团队中,有来自不同领域的专家,如数据科学家、市场营销专家等。通过他们的不同专业背景和经验,我们能够更加全面地思考和解决问题。例如,在我们的项目中,我们结合了市场营销的需求和数据科学的方法,成功地开发出了一套有针对性的营销策略。这次经验告诉我,跨界融合和团队合作是发挥大数据创新力量的重要因素。

最后,大数据创新需要不断迭代和优化。在我们的项目中,我们不断进行数据分析和模型调整,以适应市场和用户的需求变化。我们发现,随着时间的推移,用户的偏好和行为会发生变化,因此我们需要不断优化我们的数据分析和模型。通过这次实践,我体会到,大数据创新是一个不断迭代和优化的过程,只有不断调整和改进,才能得到更好的结果。

综上所述,大数据创新对于企业来说是一个重要且具有挑战性的任务。在实践中,我们需要注重数据的质量,使用合适的工具和技术,加强团队合作和跨界融合,并不断迭代和优化。只有以科学的方法和持续的努力,我们才能真正发挥大数据的创新力量,为企业的发展带来新的机遇和挑战。

心得体会大数据【第三篇】

读完《大数据时代》这本书后,我意识到:我们即将或正在迎接由书面到电子的跳跃之后的又一重大变革。

这本书介绍了大数据时代来临后,接踵而至的三项变革——商业变革、管理变革和思维变革。

其实,这场变革已经打响。商业领域由于大数据时代的到来而推陈出新。前几年,一家名为farecast的公司,让预订到更优惠的机票价格不再是梦想。公司利用航班售票的数据来预测未来机票价格的走势。现在,使用这种工具的乘客,平均每张机票可以省大约50美元,这就是大数据给人们带来的便利。

大家应该都知道20__年出现的h1n1型流感,就拿美国为例,疾控中心每周只进行一次数据统计,而病人一般都是难以忍受病痛的折磨才会去医院就诊,因此也导致了信息的滞后。然而,对于飞速传播的疾病,google公司却能及时地作出判断,确定流感爆发的地点,这便是基于庞大的数据资源,可见大数据时代对公共卫生也产生了重大的影响!

在我看来,如果想在在大数据时代里畅游,不仅要学会分析,而且还要能够大胆地决断。

在美国,每到七、八月份时,正是台风肆虐之时,防涝用品也摆上了商品货架。沃尔玛公司注意到,每到这时,一种蛋挞的销售量较其他月份明显增加。于是,商家作了大胆的推测,出现这样的结果源于两种物品的相关性,便将这种蛋挞摆在了防涝用品的旁边。这样的举措大大增加了利润,这就是属于世界头号零售商的大数据头脑!

大数据时代的到来,可以让我们的生活更加便利。但是,如果让大数据主宰一切,也存在一定的风险。

大家应该都知道电子地图,它可以为人们指引方向。但大家应该还不知道,它会默默地积累人们的行程数据,通过智能分析可以推断出哪里是自己的家,哪里是工作单位。我们的隐私就这样被不为人知地收集着。

大数据时代的到来,让我们的生活更安全,更方便,但与此同时,我们的隐私不再是隐私,数据的收集变得无所不包、无孔不入。世界已经向大数据时代迈进了一小步,一个崭新的时代正向我们走来。让我们用知识武装大脑,做好准备,迎接新时代的到来!

心得体会大数据【第四篇】

大数据共享是指将海量数据进行整合、分析和利用,帮助人们更好地理解世界、做出决策。在信息时代,大数据共享变得越来越重要,为各行各业提供了无限的机遇。在过去的几年里,我也积极参与了大数据共享的项目,在这个过程中,我收获了许多经验和体会。

首先,大数据共享需要有一个良好的数据管理平台。数据是所有的大数据共享项目的核心,数据管理的好坏直接影响到项目的运行效果。一个良好的数据管理平台应该包括数据的采集、存储、处理和分析等功能,并具备高效、安全、可靠的特点。在自己的工作中,我发现,一个优秀的数据管理平台能够帮助我们更好地管理和利用数据,提高工作效率,为决策提供可靠的依据。

其次,大数据共享需要各方积极参与和合作。大数据共享是一个复杂的过程,需要各方的积极参与和合作才能取得成功。数据的获取、整合和分析需要不同的部门和团队的配合,只有形成合力,才能从数据中挖掘出更深入的价值。在我参与的大数据共享项目中,我经常需要与其他团队进行协作,在协作过程中,我学到了倾听和沟通的重要性,也认识到只有相互信任和合作,才能达成共同的目标。

第三,大数据共享需要深入理解数据背后的故事。大数据不仅仅是一堆数字,它背后蕴含着无穷无尽的故事。我们需要从数据中挖掘这些故事,理解其中的关联和逻辑,才能真正把大数据转化为有价值的信息。在我的工作中,我经常会通过数据分析来解读数据背后的故事,帮助客户更好地理解市场趋势和用户需求。深入理解数据背后的故事,可以帮助我们更好地把握数据的内涵和价值。

第四,大数据共享需要不断更新的技能和知识。大数据领域的技术和知识不断发展和更新,我们要保持对新技术和新知识的学习和掌握,才能跟上时代的步伐。在我参与的大数据共享项目中,我不断学习新的技术和知识,提高自己的技能水平,使自己能够更好地适应和应对各种数据挑战。保持学习的态度,不断更新自己的技能和知识,是大数据共享工作的必备条件。

最后,大数据共享需要注重数据的隐私与安全保护。在大数据共享的过程中,我们不能忽视数据的隐私与安全保护。大数据包含大量的个人和敏感信息,如果泄露或滥用,将对个人和社会造成巨大的伤害。在我的工作中,我始终注重数据的隐私与安全保护,采取各种措施来保护数据的隐私和安全,确保数据的合法使用。数据的隐私与安全保护是大数据共享工作的一项重要责任,也是我们应该始终坚守的底线。

综上所述,大数据共享是一个复杂而有挑战的工作,需要具备良好的数据管理平台、各方积极参与和合作、深入理解数据背后的故事、不断更新的技能和知识以及数据的隐私与安全保护。在未来的工作中,我将继续努力学习和探索,不断提升自己的专业能力,在大数据共享的道路上不断取得进步。相信通过共享大数据,我们可以更好地认识世界、解决问题、推动社会发展。

心得体会大数据【第五篇】

《大数据时代》这本书写的很好,很值得一读,因为会给我们很多启发,比如你在相关的社交网站发表的言论或者照片都很有可能被“数据科学家”们利用,从而再将相关数据卖给各大网店。下面是本站网友为大家收集分享的“最新心得体会大数据模板【优质5篇】”,欢迎大家阅读。

利用周末,一口气读完了涂子沛的大作《大数据》。这本书很好看,行文如流水,引人入胜。书中,你读到的不是大数据技术,更多是与大数据相关的美国政治、经济、社会和文化的演进。作为一名信息化从业者,读完全书,我深刻感受到了在信息化方面中国与美国的各自特色,也看到了我们与美国的差距。有几个方面的体会,但窥一斑基本能见全貌。

一是政府业务数据库公开的广度和深度。近年来,随着我国信息公开工作的推进,各级政府都在通过政府门户网站建设积极推进网上政务信息公开,但我们的信息公开,现阶段还主要是政府的政策、法律法规、标准、公文通告、工作职责、办事指南、工作动态、人事任免等行政事务性信息的公开。当然,实时的政府业务数据库公开也已经取得很大进步。在中国政府门户网,可以查询一些公益数据库,如国家统计局的经济统计数据、环保部数据中心提供的全国空气、水文等数据,气象总局提供的全国气象数据,民航总局提供的全国航班信息等;访问各个部委的网站,也能查到很多业务数据,如发改委的项目立项库、工商局的企业信用库、国土资源部的土地证库、国家安监总局的煤矿安全预警信息库、各类工程招标信息库等等。这是一个非常大的进步,也是这么多年电子政务建设所取得的成效和价值!但是,政务业务数据库中的很多数据目前还没有实现公开,很多数据因为部门利益和“保密”等因素,还仅限于部门内部人员使用,没有公开给公众;已经公开的数据也仅限于一部分基本信息和统计信息,更多数据还没有被公开。从《大数据》一书中记录的美国数据公开的实践来看,美国在数据公开的广度和深度都比较大。美国人认为“用纳税人的钱分享的“最新心得体会大数据模板【优质5篇】”,尽管美国政府事实上对数据的公开也有抵触,但民愿不可违,美国政府的业务数据越来越公开,尤其是在奥巴马政府签署《透明和开放的政府》文件后,开放力度更加大。是美国联盟政府新建设的统一的数据开放门户网站,网站按照原始数据、地理数据和数据应用工具来组织开放的各类数据,累积开放378529个原始和地理数据集。在中国尚没有这样的数据开放的网站。另外,由于制度的不同,美国业务信息公开的深度也很大,例如,网上公布的美国总统“白宫访客记录”公布的甚至是造访白宫的各类人员的相关信息;美国的网站,能够逐条跟踪、记录、分析联邦政府每一笔财政支出。这在中国,目前应该还没有实现。

二是对政府对业务数据的分析。目前,中国各级政府网站所提供的业务数据基本上还是数据表,部分网站能提供一些统计图,但很少能实现数据的跨部门联机分析、数据关联分析。这主要是由于以往中国政务信息化的建设还处于部门建设阶段。美国在这方面的步伐要快一些,美国的网站,不仅提供原始数据和地理数据,还提供很多数据工具,这些工具很多都是公众、公益组织和一些商业机构提供的,这些应用为数据处理、联机分析、基于社交网络的关联分析等方面提供手段。如上提供的白宫访客搜索工具,可以搜寻到访客信息,并将白宫访客与其他微博、社交网站等进行关联,提高访客的透明度。

三是关于个人数据的隐私。在美国,公民的隐私和自有不可侵犯,美国没有个人身份证,也不能建立基于个人身份证号码的个人信息的关联,建立“中央数据银行”的提案也一再被否决。这一点,在中国不是问题,每个公民有唯一的身份信息,通过身份证信息,可以获取公民的基本信息。今后,随着国家人口基础数据库等基础资源库的建设,公民的社保、医疗等其他相关信息也能方便获取,当然信息还是限于政府部门使用,但很难完全保证整合起来的这些个人信息不被泄露或者利用。

数据是信息化建设的基础,两个大国在大数据领域的互相学习和借鉴,取长补短,将推进世界进入信息时代。我欣喜地看到,美国政府20xx年启动了“大数据研发计划”,投资2亿美元,推动大数据提取、存储、分析、共享、可视化等领域的研究,并将其与超级计算和互联网投资相提并论。同年,中国政府20xx年也批复了“国家政务信息化建设工程规划”,总投资额估计在几百亿,专门有人口、法人、空间、宏观经济和文化等五大资源库的五大建设工程。开放、共享和智能的大数据的时代已经来临!

读了《大数据时代》后,感觉到一个大变革的时代将要来临。虽然还不怎么明了到底要彻底改变哪些思维和操作方式,但显然作者想要“终结”或颠覆一些传统上作为我们思维和生存基本理论、方法和方式。在这样的想法面前,我的思想被强烈震撼,不禁战栗起来。

“在小数据时代,我们会假象世界是怎样运作的,然后通过收集和分析数据来验证这种假想。”“随着由假想时代到数据时代的过渡,我们也很可能认为我们不在需要理论了。”书中几乎肯定要颠覆统计学的理论和方法,也试图通过引用《连线》杂志主编安德森的话“量子物理学的理论已经脱离实际”来“终结”量子力学。对此我很高兴,因为统计学和量子力学都是我在大学学习时学到抽筋都不能及格的课目。但这两个理论实在太大,太权威,太基本了,我想我不可能靠一本书就能摆脱这两个让我头疼一辈子的东西。作者其实也不敢旗帜鲜明地提出要颠覆它们的论点,毕竟还是在前面加上了“很可能认为”这样的保护伞。

近几十年,我们总是在遇到各种各样的新思维。在新思维面前我们首先应该做到的就是要破和立,要改变自己的传统,跟上时代的脚步。即使脑子还跟不上,嘴巴上也必须跟上,否则可能会被扣上思想僵化甚至阻碍世界发展的大帽子。既然大数据是“通往未来的必然改变”,那我就必须“不受限于传统的思维模式和特定领域里隐含的固有偏见”,跟作者一起先把统计学和量子力学否定掉再说。反正我也不喜欢、也学不会它们。

当我们人类的数据收集和处理能力达到拍字节甚至更大之后,我们可以把样本变成全部,再加上有能力正视混杂性而忽视精确性后,似乎真的可以抛弃以抽样调查为基础的统计学了。但是由统计学和量子力学以及其他很多“我们也很可能认为我们不再需要的”理论上溯,它们几乎都基于一个共同的基础——逻辑。要是不小心把逻辑或者逻辑思维或者逻辑推理一起给“不再需要”的话,就让我很担心了!

《大数据时代》第16页“大数据的核心就是预测”。逻辑是——描述时空信息“类”与“类”之间长时间有效不变的先后变化关系规则。两者似乎是做同一件事。可大数据要的“不是因果关系,而是相关关系”,“知道是什么就够了,没必要知道为什么”,而逻辑学四大基本定律(同一律、矛盾律、排中律和充足理由律)中的充足理由律又“明确规定”任何事物都有其存在的充足理由。且逻辑推理三部分——归纳逻辑、溯因逻辑和演绎逻辑都是基于因果关系。两者好像又是对立的。在同一件事上两种方法对立,应该只有一个结果,就是要否定掉其中之一。这就是让我很担心的原因。

可我却不能拭目以待,像旁观者一样等着哪一个“脱颖而出”,因为我身处其中。问题不解决,我就没法思考和工作,自然就没法活了!更何况还有两个更可怕的事情。

其一:量子力学搞了一百多年,为了处理好混杂性问题,把质量和速度结合到能量上去了,为了调和量子力学与相对论的矛盾,又搞出一个量子场论,再七搞八搞又有了虫洞和罗森桥,最后把四维的时空弯曲成允许时间旅行的样子,恨不得马上造成那可怕的时间旅行机器。唯一阻止那些“爱因斯坦”们“瞎胡闹”的就是因果关系,因为爸爸就是爸爸,儿子就是儿子。那么大数据会不会通过正视混杂性,放弃因果关系最后反而搞出时间机器,让爸爸不再是爸爸,儿子不再是儿子了呢?其二:人和机器的根本区别在于人有逻辑思维而机器没有。《大数据时代》也担心“最后做出决策的将是机器而不是人”。如果真的那一天因为放弃逻辑思维而出现科幻电影上描述的机器主宰世界消灭人类的结果,那我还不如现在就趁早跳楼。

还好我知道自己对什么统计学、量子力学、逻辑学和大数据来说都是门外汉,也许上面一大篇都是在胡说八道,所谓的担心根本不存在。但问题出现了,还是解决的好,不然没法睡着觉。自己解决不了就只能依靠专家来指点迷津。

所以想向《大数据时代》的作者提一个合理化建议:把这本书继续写下去,至少加一个第四部分——大数据时代的逻辑思维。

在《大数据时代》一书中,大数据时代与小数据时代的区别:1、思维惯例。大数据时代区别与转变就是,放弃对因果关系的渴求,而取而代之关注相关关系。也就是说只要知道“是什么”,而不需要知道“为什么”。作者语言绝对,却反思其本质区别。数据的更多、更杂,导致应用主意只能尽量观察,而不是倾其所有进行推理?这也是明智之举2、使用用途。小数据停留在说明过去,大数据用驱动过去来预测未来。笔者认为数据的用途意在何为,与数据本身无关,而与数据的解读者有关,而相关关系更有利于预测未来。3、结构。大数据更多的体现在海量非结构化数据本身与处理方法的整合。大数据更像是理论与现实齐头并进,理论来创立处理非结构化数据的方法,处理结果与未来进行验证。4、分析基础。大数据是在互联网背景下数据从量变到质变的过程。笔者认为,小数据时代也即是信息时代,是大数据时代的前提,大数据时代是升华和进化,本质是相辅相成,而并非相离互斥。

数据未来的故事。数据的发展,给我们带来什么预期和启示?银行业天然有大数据的潜质。客户数据、交易数据、管理数据等海量数据不断增长,海量机遇和挑战也随之而来,适应变革,适者生存。我们可以有更广阔的业务发展空间、可以有更精准的决策判断能力、可以有更优秀的经营管理能力„„可以这些都基于数据的收集、整理、驾驭、分析能力,基于脱颖而出的创新思维和执行。因此,建设“数据仓库”,培养“数据思维”,养成“数据治理”,创造“数据融合”,实现“数据应用”才能拥抱“大数据”时代,从数据中攫取价值,笑看风云变换,稳健赢取未来。

39 3539485
");