高中数学教学反思简短 高中数学教学反思10篇精选4篇

网友 分享 时间:

【请您参阅】下面供您参考的“高中数学教学反思简短 高中数学教学反思10篇精选4篇”是由阿拉网友精心整理分享的,供您阅读参考之用,希望此例范文对您有所帮助,喜欢就复制下载支持一下小编了!

高中数学教学反思简短 高中数学教学反思10篇【第一篇】

我将从以下几个方面说一说自己在教学中体会:

曾听过细节决定成败,虽说有夸大其词的说法,但从另一方面说明细节的重要性。在一堂课之中这细节可能是某个问题——如反函数的提出,也可能是某个问题的解释——复合函数的单调性,也许是某个内容的先后问题——如分段函数的奇偶性的提出,也学是对学生的态度等。一堂课之中,细节处理的好一点,缺憾就少一点。

再讲复合函数的单调性时,要强调特殊到一般的认识过程。呈现的方式不拘泥于一种形式,复合函数的单调性涉及到多次对应,可以以表格的形式体现,也可以以集合的图示体现,但要强调要在区间中取值。从中学生可较为容易的理解——同增异减这一结论。如果为了加强理解可举具体的实例,根据定义结合参与复合的两个函数的单调性给出证明。

每堂课都有许多知识点。就新课而言,每个知识点都可以进行变式、坡式的训练。单一的重复的训练是机械而且是没有多大益处的。重复有必要,但要适可而止。要在重复中提高,这就需要在系统、综合方面加强训练,以启迪、发散思维。如数学中常讲的含参数的问题,最值中涉及到二次函数轴动或是区间动的问题。一般而言,动态的问题要比静态的问题有难度。所以要在这方面逐步的渗透。

设置问题是一节课的重要环节。根据内容设置一系列有梯度的问题。设置问题要注意的几个原则:①必要性;②针对性;③准确性;④层次性;⑤时效性;⑥创新性;⑦价值性;⑧逻辑性。如:如何把反函数给学生讲的通俗易懂。有一个角度:反解,原来的应变量变成了自变量,换言之坐标系发生了怎样的变化。可理解成沿某条直线翻转了一百八十度。

在课堂环节方面:要注意一堂课的设计流程,注意每个环节的衔接,每个环节的解释。出示例题、问题、习题首先要留给学生思考的时间。其次自己要准备的特别的充分,特别的熟练,要有预见性,自信、从容,那种兴奋、冲动的热情,释放出愉悦的能量。学生什么情况都有可能出现,也许某一位同学是这里不理解,也许这位同学是那里不理解。要照顾到大多数的同学,而不是听到了从个别几位同学嘴里发出的声音就去讲下一个问题。出示例题、问题、习题之后就要想着如何启发学生,如何给学生释疑。如:再讲函数零点的时候,有这样的题判断方程根的情况,所给的方程是比较有特点的。这时学生可以想到,有些方程可以用求根公式或是因式分解或是换元的方法来确定方程的根。另一种思想便是转化的思想,转化成判断函数零点的问题。当然就是利用函数的图像,在这里极少或是没有同学可以想到将等式的两边分别看成相应的函数,若有,这样问题就转化成了看函数图像是否有交点。

课堂中有释疑这一环节,释疑时需要注意贴切,达到一个题眼一点就破的高度。范老师在解释“精确度”时就显得非常的自然、贴切,似乎这就是我们心中蒙蔽的想法(学生心中或者已有一些朦胧的模糊的纷乱的想法,只需要老师清晰的一理,他便会获得收获的兴奋、喜悦)。听了他的解释之后似乎有豁然开朗的感觉,而非是解释的越多,越像是在迷雾里打转。要在流程上,问题的设置、解释上,环节的衔接上用心下功夫。(听同事说三中推出新人的标准:干练、精准、严谨、激情)

要想快速的汲取营养,最快的途径是向其他教师学习,取他人之长,最好的可以内化。他们有着老道的方式、方法及技巧。曾听办公室的同事说他如何解释反函数,听后即感清新。问他的问题,多有此感觉。有些问题值得潜下心来琢磨或是问一问同事是怎么处理的,不能拘泥于一处。

同事之中有许多经验丰富的教师,他们身上有许多可取之处,如他们的个性、独特、洒脱。细想一下他们的风格是如何形成的。在所处的学科组中有两位教学别具一格的教师。一位善于层层设问,精巧富有层次,丰富又系统,细致又不失大气。另一位则洒脱自如,点睛之语使人释然,不显章法,又有迹可循,综合中的变化,变化中的提升,一览众山小。这种层次性的设问,点睛之语值得学习。

高中数学教学反思简短 高中数学教学反思10篇【第二篇】

“吾日三省吾身”是我国古代的教育家对反思问题的最简洁表达。新课程标准颁布,为新一轮教学改革指明了方向,同时也为教师的发展指明了道路,作为教师的我们,须认真学习新课程标准和现代教学教育理论,深刻反思自己的教学实践并上升到理性思考,尽快跟上时代的步伐。

课改,首先更新教学观念,打破陈旧的教学理念,苏霍姆林斯基说过:“懂得还不等于己知,理解还不等于知识,为了取得更牢固的知识,还必须思考。”作为新课程推行的主体——教师,长期以来已习惯于“以教师为中心”的教学模式,而传统的课堂教学也过分强调了教师的传承作用,思想上把学生看做消极的知识容器,单纯地填鸭式传授知识,学生被动地接受,结果事倍功半。新课改强调学生的全面发展,师生互动,培养学生终身学习的能力,学生在老师引导下,主动积极地参与学习,获取知识,发展思维能力,让学生经过猜疑、尝试、探索、失败,进而体会成功的喜悦,达到真正的学!所以,现在教师角色的定位需是在动态的教学过程中,基于对学生的观察和谈话,“适时”地点拨思维受阻迷茫的学生,“适度”地根据不同心理特点及不同认知水平的学生设计不同层次的思考问题,“适法”地针对不同类型知识选择引导的方法和技巧。

初教高一时,深感高中教材跨度大,知识难度、广度、深度的要求大幅高,这种巨大的差异,使刚从初中升到高中的学生一下子无从适应,数学成绩出现严重的滑坡,总感数学难学,信心不足。由于大部分学生不适应这样的变化,又没有为此做好充分的准备,仍然按照初中的思维模式和学习方法来学习高中数学知识,不能适应高中的数学教学,于是在学习能力有差异的情况下而出现了成绩分化,学习情绪急降。作为教师应特别关注此时的衔接,要充分了解学生在初中阶段学了哪些内容?要求到什么程度?哪些内容在高中阶段还要继续学习等等,注意初高中数学学习方式的衔接,重视培养学生正确对待困难和挫折的良好心理素质,适应性能力,重视知识形成过程的教学,激发学生主动的学习动机,加强学法指导,引导学生阅读、归纳、总结,提高学生的自学能力,善于思考、勇于钻研的意识。

教学中进行反思,即及时、自动地在行动过程中反思。教学过程既是学生掌握知识的过程,发展学生智力的过程,又是师生交往、积极互动、共同发展的过程。教学中的师生关系不再是“人、物”关系,而是“我、你”关系;教师不再是特权式人物,教学是师与生彼此敞开心扉、相互理解、相互接纳的对话过程。在成功的教学过程中,师生应形成一个“学习共同体”,他们一起在参与学习过程,进行心灵的沟通与精神的交融。波利亚曾说:“教师讲了什么并非不重要,但更重要千万倍的是学生想了些什么,学生的思路应该在学生自己的头脑中产生,教师的作用在于“系统地给学生发现事物的机会”。教学中教师要根据学生反馈的信息,反思“出现这样的问题,如何调整教学计划,采取怎样有效的策略与措施,需要在哪方面进行补充”,从而顺着学生的思路组织教学,确保教学过程沿着最佳的轨道运行,这种反思能使教学高质高效地进行。

教学时应注意,课堂回答问题活跃不等于教学设计合理,不等于思维活跃,是否存在为活动而活动的倾向,是否适用所有学生,怎么引起学生参与教学。教师必须围绕教学目的进行教学设计,根据学生已有的知识水平精心设计,启发学生积极有效的思维,从而保持课堂张力。设法由学生自己提出问题,然后再将学生的思考引向深入。学生只有经过思考,教学内容才能真正进入他们的头脑,否则容易造成学生对老师的依赖,不利于培养学生独立思考的能力和新方法的形成。有时我们在上课、评卷、答疑解难时,自以为讲清楚明白了,学生受到了一定的启发,但反思后发现,自己的讲解并没有很好的针对学生原有的知识水平,从根本上解决学生存在的问题,只是一味的想要他们按照某个固定的程序去解决某一类问题,学生当时也许明白了,但并没有理解问题的本质性的东西。

就上面讲到的初高中数学存在巨大差异,高中无论是知识的深度、难度和广度,还是能力的要求,都有一次大飞跃。学生有会学的,有不会学的,会学习的学生因学习得法而成绩好,成绩好又可以激发兴趣,增强信心,更加想学,成绩越拔尖,能力越提高,形成了良性循环。不会学习的学生开始学习不得法而成绩不好,如能及时总结教训,改变学法,变不会学习为会学习,经过一番努力能赶上去;如不思改进,不作努力,成绩就会越来越差,当差距拉到一定程度以后,就不容易赶上去了,成绩一差会对学习丧失兴趣,不想学习,越不想学成绩越降,继而在思想上产生一种厌恶,害怕,对自我怀疑,对学习完全失去了信心,甚至拒绝学习。由此可见,会不会学习,也就是学习方法是否科学,是学生能否学好数学的极其重要的因素。

我们应明确,合作学习这只是有效学习方式中的一种,教学中根据教学目标、教学内容等合理的选择教学行为和学习方式,要避免“将所有的原料配料放入合作学习之盘”。教师需关注学情,提前建立评价建体系,挖掘合作点,顺学而导,使学生掌握技能会合作,同时应提供充裕的合作学习时间,激活内因真正促发展。

在数学教学中需要反思的地方很多,没有反思,专业能力不可能有实质性的提高,教师要在数学教学过程中充分理解新课程的要求,不断地更新观念、不断探索,提高自身的学识和身心修养,掌握新的专业要求和技能,在教学过程中只有勤分析,善反思,不断总结,以适应新课程改革的需要,教育教学理念和教学能力才能与时俱进,全面开展素质教育。

高中数学教学反思简短 高中数学教学反思10篇【第三篇】

随着课程的逐步深入,可能导致学生对高中数学课程的难以理解和教师对高中数学课程的难以教学的问题出现。为了有更好的教学效果,我们用情境创设来提高我们的教学质量,让学生在情境中不知不觉地理解和记住某些知识,在情境中学习,在快乐中学习。

一、情境创设的对象和好处

我们针对教学中出现的一系列问题,比如说学生对于比较难的知识点听不懂;对长久以来的机械教学感到厌倦,不想听,这时我们需要对教学方法进行调整,给学生创造一个不一样的课堂,吸引学生的眼球,丰富多彩的情境不仅仅提高了学生的用心性,而且对于课堂的效率也有十分显著的提高。

二、情境创设的原则

情境创设的根本目的是对学生的自身发展具有良好的促进好处,我们不但注重情景的模拟,还要在情境创设中对学生的未来有影响,教会他们应对问题的分析方法,其中最重要的是指导学生对于世界观的认知,找出普遍的规律,用心思考,情境创设在无形中对于学生有深远的影响。在情境创设中,我们最基本的是要保证教学资料的准确性,保证与教材相一致,假如创设的教学的资料都有问题,那么无论如何创设情景都是一个失败的案例,只能为你带来麻烦,给学生带来负担。其次,教学是合理的教学,是在现有基础上的教学,是有侧重点的教学,情境创设出一个能被大家所理解的所看到的浅显的资料才是好的教学案例。我们在情境创设中忌讳华而不实的教学方法。最后,我们要根据学生现有的认知水平进行情境创设,过高过低的估计都不利于教学的进行。情境创设要量身定做,争取到达最完美的教学效果。另外,情境创设更要注重创新,与时俱进。作为国家未来栋梁的二十一世纪的学生,正在努力理解着新知识的滋养,我们不能把过去的例子一遍一遍的重复,创新的案例使教学事半功倍。与此同时,教师与学生的关系也正在微妙变化着,我们根据与学生之间的关系变更教学策略,引导学生对数学的正确思考方式,让学生真正爱上数学。

三、情境创设的方法

(一)抛实际问题,给学生对求解的渴望

在情境创设方法中,最基本的就是向学生抛问题,把我们常见的生活中的问题提出来,引起学生的共鸣,推进学生对问题求解的热情。我们明白,数学虽然是一门理学学科,但是也是来源于生活,都是从生活中抽出的模型,我们只需将数学模型回归到生活中,就能够到达意想不到的效果,这种方法简单易行,是多数教师教学的首选方法。例1:在我们学习“余弦定理”中,教师做课程导入便可这样:上节课我们学习了正弦定理,明白了透过两条边及两条边的对角的计算,便可得到三角形边长和角度的所有数据,那我们想想如果只明白两边和这两边所夹的角,能不能求出第三边呢?由此引出余弦定理,进而得出余弦定理的适用范围。这便是一个成功的案例,我们透过对问题的抛出引出了本节课讲授的知识点,避免了直接讲授余弦定理的使用条件造成和正弦定理相混的状况。不但使课堂更有效率,对于学生的记忆也很有帮忙。

(二)实际性的计算,给学生验证定理

对于错综复杂的定理,教师自己当初学的时候都有困难,更不用说是小我们十几岁的学生了,那么此时,我们如果将这些定理实际地让学生算一算,最后再告诉他们规律,那么对于学生的印象就会深刻许多。例2:同样是学三角函数,教师能够在课程导入时从直角三角形出发,分别计算各边与对角正弦值的比值,之后算锐角三角形,钝角三角形,学生惊奇地发现比值都是一样的,这就代表这是个普遍适用的规律,我们最后在引入正弦定理,相信透过这种方法,学生会比较容易理解。我们透过让学生自己动手计算,不但让他们自己发现规律,而且验证了正弦定理的普适性,所以在教学中,应自己探索有效的方法,让学生真正喜欢上教师的授课。

(三)发散性的思维,让学生自主探究

我们在情境创设中,发散思维也是很常见的方法,这提高了学生自主探究的潜力,对创新性有很大的帮忙。例3:我们在学习“数列”的时候,学习了等差数列。在学习等差数列中,最重要的就是通项公式,我们在教学中,先拿出几个等差数列的例子,让学生自主讨论他们的通项公式,共同检验公式正确与否,而后,教师给出写等差数列的方法,回头再次与学生给出的相比较,最后在反复探究中,得到写通项公式最快速的方式。这旨在引导学生的发散性思维,在数学中,发散性思维极其重要,毕竟数学不仅仅仅是一门死记硬背的科目,我们在情境创设中,多多少少给他们一些开发,对于他们以后的学习具有很重要的好处。

(四)用自身的体验,给学生难忘的经历

当讲述的资料不容易理解时,教师能够选取将它娱乐化。这样学生会在游戏中不知不觉体会到知识的价值。例4:当我们学习“排列组合”的时候,教师就能够进行课堂互动,让学生上前边来,演示各种排法,比如说红绿灯有多少种排列方式的问题,学生透过自己的体验回答是6种,那么我们就能够进一步引导,与3*2*1结果相同,这时我们便能够引导出求排列问题的方法。新课标下的数学课程,最重要的就是让学生有探索潜力,有独自思考的潜力,这些都是一个学生在人生中需要逐渐培养起来的意识,我想我们从此刻开始加以引导,透过情境创设让他们多在这方面思考思考,争取为培养出一个全方面发展的人才做出贡献。

高中数学教学反思简短 高中数学教学反思10篇【第四篇】

提高高中数学课堂教学的有效性

高中数学课堂教学作为高中生和老师知识交流的重要平台,担负着重要的知识学习和传授的功能。在课堂上透过教师有计划、有目的、有组织的开展系统的教学活动,实现高中生的有秩序的知识学习,达成教师和高中生之间、高中生和高中生之间的交流互动以及共同发展。课堂教学的效果直接关系到教师教学的效果和高中生学习在的实际状态,如何有效的开展好课堂教学,促进高中生的有效学习,是高中阶段数学教学务必要克服的重要课题。这就需要教师要克服应试教育和旧的教育观念的影响和桎梏,摒弃“满堂灌”式的教学方法,更新教学观念,用新课程的教学理念指导教学工作,调动高中生的学习用心性,促进高中生的自主化探究。调整教学目标为知识学习和潜力成长并重,发挥高中生的主观能动性,实现高中生的知识和潜力的全面成长。

实现高中数学教学的有效性是新课程改革理念的重要一环,透过有效的改善教学方式方法,施加教学活动的影响,让每一个高中生获得更有效的学习效果。不仅仅仅只是着眼于高中生的知识学习,更重要的是要着眼于高中生的潜力发展。在高中生知识成长和潜力发展的同时,教师自身素质也要实现发展。具体表此刻:高中生从学会转变为会学;高中生的思维潜力、创新潜力和解决问题的潜力的到普遍提高;高中生的情感受到熏陶,实现用心的学习态度。透过有效的课堂学习使高中生学到有利于自己发展的知识、技能,获得影响今后发展的价值观念和学习方法。而对教师来说,透过有效的课堂教学,施展教师自身的教学魅力实现自我价值,更会享受到课堂教学和师生互动交流给教师和高中生带来的快乐和满足。

我们明白兴趣是高中生学习的最佳营养剂和原动力,只要高中生对高中数学的学习充满了兴趣,学习的效果就会得到大幅度的提升。正是基于这样的客观认识,新课程标准把情境激趣作为高中数学课堂教学的重要实施手段。那么,什么样的情境更能够引起高中生的学习兴趣呢?透过超多的教学实例的分析,我们发现与高中生的实际生活联系紧密的情境教学更能够引起高中生的注意,激起高中生学习的欲望。为此,我在开展高中数学教学的过程中,注重把高中生的生活实际中的实例引入到教学中来,创设出具有生活气息的教学情境,让这些情境吸引高中生的注意力,引导高中生进行自主探究。在教学的过程中,强调高中生用数学的眼光从生活中捕捉数学问题,构成数学的思维。透过高中生的学以致用,让高中生学会主动地运用数学知识分析和解决生活中的数学问题。从高中生已有的生活经验出发,设计高中生感兴趣的生活素材,以丰富多彩的形式展现给高中生,使高中生感受到数学来源于生活,又应用于生活。所以,在高中数学教学中,把高中生的生活实际中的经验和高中生需要学习的数学知识有机的结合到一齐,创设出具有生活气息的生活情境,让高中生在这些生活情境中自主发现问题、思考问题,研究遇到的问题,尝试解决实际问题。在整个过程中左右情境教学效果的因素就是情境创设的有效性。结合高中生的生活实际实现这种情境创设的有效性,能够有效的调动高中生的学习兴趣,提高教学的实际效果。

课堂教学实施需要遵循必须的教学步骤和程序结构,在实施课堂教学的过程中这种课堂教学步骤和程序结构是否合理,是否到达了最大的优化效果直接影响着教师的教学和高中生的学习效果。所以,在高中数学教学中透过有效的优化课堂教学步骤、程序结构,实现教学过程的最大优化组合,为实现高中生的高效学习奠定基础。课堂教学的过程要注意教学目标与具体要求,更要重视高中生的认知过程,教师的教学环节务必要贴合高中生的认知过程和认知规律。只有贴合高中生的认知过程和认知规律的教学结构才是合理的教学结构。优化教学的架构就是要结合高中数学教学的目标以及高中生的认知规律合理的设置教学过程和教学结构已到达,更好地实现高中生高效学习的目的。同时,由于高中生的差异性,决定了课堂教学务必要具有层次性,既要关注优等生的学习过程更要关注大多数高中生的实际状况,兼顾学习有困难和学有余力的高中生,遵循高中生的认识规律和年龄特征,按照由低到高,由浅入深的原则实施教学。

开启高中生的智慧,实现高中生的智慧在课堂教学中的高效转化,需要的是教师的有效组织和引导更需要高中生的思维配合。所以,在教学中锻炼高中生的思维,促进高中生数学思维的成长,实现高中生的思维和智慧转化,是高中数学教师有效提高课堂教学效果的重要方面。为此,我们要做的是在兼顾高中生的知识学习的基础上锻炼高中生的思维,促进高中生的智慧成长。课堂教学中,要引导高中生对知识由理解到掌握,进而能灵活运用,变为潜力,最大限度地发挥高中生的思维才智,以求得最佳教学效果,这就要求在教学中充分发挥教学机智。数学教学机智主要有启发联想、构思多解、运用反例、及时调节、渗透数学思想与方法等。总之,高中数学课堂教学中,培养高中生的思维的方法有很多。经过多年的教学实施我们发此刻高中数学教学中培养高中生的思维潜力能够合理设置数学练习,训练高中生对同一条件的敏感性,促使高中生思维联想,培养高中生的创新性思维意识和潜力。还能够加强一题多解、一题多变、一题多思等。另外加强数学和生活的联系设置开放性试题,培养高中生的发散思维。

48 2379987
");