小数乘小数教学反思优缺点样例【优推5篇】

网友 分享 时间:

小数乘小数教学反思优缺点【第一篇】

苏教版第9册86页例1、87页“试一试”、“练一练”,89页1、2题。

掌握小数乘小数的计算法则,能正确进行计算,培养学生的推理、概括、估算能力,进一步体会转化思想的价值和新旧知识之间的内在联系。

确定积的小数点的位置。

一、复习:

×3=。

说这个算式的意义,回忆小数和整数相乘的方法。谈话:哪些同学有自己的小房间,是什么形状的?导入新课。

(设计意图:回忆小数和整数相乘的方法,为后面概括小数和小数相乘的法则作铺垫。谈话过渡自然。)。

二、新授:

1、教学例1。

(1)出示例1:(挂图)。

(2)下面是小明房间的平面图,房间长米,宽米。

房间面积和阳台面积的算式同时列出。

列式后说说和我们以前学的小数乘法有什么不同?板书课题:小数乘小数。

(设计意图:房间面积和阳台面积的算式同时列出,便于一扶一放。)。

让学生先估计一下。

×≈()。

想:3×2=6(平方米)。

4×3=12(平方米)。

房间的面积在6-12平方米之间。

还可以怎么估算?

4×2=8(平方米)3×3=9(平方米)×3=(平方米)。

哪一种估算方法比较好?

(3)猜:列竖式怎样算呢?可以先按整数乘法算吗?

×1036。

××10×28。

288288。

7272。

1008÷1001008。

相乘后怎样才能得到原来的积?

(4)学生讨论得出:

两个因数分别乘10,积就扩大100倍,要求原来的积,1008就要缩小100倍,要除以100。原来的积是。

这个结果与我们刚才猜的和估算的结果是否一致?

(设计意图:先估计得数,然后根据估计的得数猜小数点位置,再用算理验证小数点的位置是否正确,构建知识的形成过程,进一步发挥估算的作用,体现估算的价值。)。

小数乘小数教学反思优缺点【第二篇】

小数乘小数的计算方法,学生会直观的认为如因数中的小数位数一共有两位,积的小数位数也应该是两位,以此类推。当然学生的这一发现是正确的,然而我们应该知其然,还应知其所以然,明确为什么可以这样来做,即验证的过程也是重要的。学习小数乘整数时,我们是运用了大量举例来验证的,这节课通过推理来进行验证。教学中一方面通过先估算,估计出结果的大致范围,一边用已有的经验尝试练习。初步了解如何确定积的小数位数。接着通过提问*问为什么积是两位小数,引导学生进一步的探究其中的算理,激发学生探究的欲望。让学生明白了因数扩大了几倍,要使积不变应反之缩小相应的倍数,这也是积不变规律的运用体现,使学生感受到知识系统性、连贯性,进一步发展学生灵活运用所学知识的能力。小数乘小数的计算方法,学生会直观的认为如因数中的小数位数一共有两位,积的小数位数也应该是两位,以此类推。当然学生的这一发现是正确的,然而我们应该知其然,还应知其所以然,明确为什么可以这样来做,即验证的过程也是重要的。学习小数乘整数时,我们是运用了大量举例来验证的,这节课通过推理来进行验证。教学中一方面通过先估算,估计出结果的大致范围,一边用已有的经验尝试练习。初步了解如何确定积的小数位数。接着通过提问*问为什么积是两位小数,引导学生进一步的探究其中的算理,激发学生探究的欲望。让学生明白了因数扩大了几倍,要使积不变应反之缩小相应的倍数,这也是积不变规律的运用体现,使学生感受到知识系统性、连贯性,进一步发展学生灵活运用所学知识的能力。接着运用刚才的推理计算阳台的面积,让学生通过观察,发现,比较,抽象概括出小数乘以小数的计算方法。最后通过练习让学生深化小数乘以小数的计算方法,提高学生的计算能力。

小数乘小数本小节是第一单元的一个教学重点,它是在学生学习了小数乘整数的基础上进行教学的。并紧紧依托学生已有知识和经验,顺应探索过程中学生的思维取向,引导学生进行主动探索、积极思考和讨论交流,在不断地“产生疑问、进行探索、释疑、运用”这一循环过程中,自然地发现“积中小数位数与因数小数位数”的关系。注重对算理和算法的自主探索。在整个过程中,我放手让学生充分运用已有知识自己去探索,凭学生自己的理解来寻找解决新问题的方法。再通过相互的交流,不断产生认知冲突,思维产生碰撞的火花,营造出继续探索规律,解决新问题的氛围。

(1)独立尝试。学生在独立计算×时,势必会根据对前面小数乘以整数,整数乘以小数的算法和算理的'理解来进行计算,这一尝试可充分暴露学生的思维过程,我充分了解学生计算小数乘以小数时在认知上的难点,为接下来有针对性、有重点的教学找准了最佳的切入口。

(2)交流各自的算法与想法。在交流中,我让不同层次的学生畅谈自己的算法与想法,及时掌握学生不同的思维生长点和认知区别。比如在计算小数乘小数的过程中,教师首先让学生估算×的结果最大是多少,然后让学生再进行计算。我充分尊重学生,让尽可能多的学生创造性地参与到计算的探索过程中来,对学生算法、算理和结果上的对与错不作判断,而是把各种不同的算法与想法展示给全班学生,让其产生思维的碰撞与冲突,为其留下思维的空间。

小数乘小数教学反思优缺点【第三篇】

小数乘小数的计算方法,教材这样归纳:先按照整数乘法计算,看因数中一共有几位小数,再从积的右起数出几位,点上小数点。在实际教学中,有学生根据前面小数乘整数的计算方法迁移归纳成:看因数中一共有几位小数,积(指未化简的)就是几位小数。这两种说法实际上是一致的,都可从由积的变化规律中得出,因此,本课的重点和难点都应当在于帮助学生发现和掌握因数中小数位数变化引起积中小数位数变化的规律,形成比较简单的确定积的小数点位置的方法。

关键在于适当弱化积的计算过程,突出寻找积的小数位数与因数的小数位数的关系,以保证学生思推的高效性,也免计算时的枯燥无味的感觉。而教法上更多地可以依知识的生长结构近移类推,让学生自主发现、归纳和掌握。

小数乘小数是第一单元的一个教学重点,它是学生在学习了小数乘整数的基础上进行教学的。我以为这一知识学生已有了一定的基础,只要重点掌握了小数乘法的算理,学起来应该是比较轻松的,可事实大大出乎我的意料。

由于对难点问题——积的小数点的位置处理得不到位,所以在课后练习中,学生出现错误的现象比较多:1.方法上的错误。例如在教学例3(×)时,学生能流利地说出先将两个因数分别乘10.这样积想当于来100,为了使积不变,最后还要将积除以100;但是在计算的过程中,学生不能将算理与方法结合起来,不能正确地解决积的小数点的问题,2.计算上的失误。(1)部分学生在积的末尾有0时,先画去0再点小数点;部分学生在遇到因数是纯小数或因数中间有0时,还要将0再乘一遍。(2)因数的数位较多时,个别学生直接写出得数(如×的竖式下直接写出152,没有计算的过程),做完竖式,不写横式的数等,面对学生出现的这样那样的错误,我不得不重新开始审自已的课堂,审视自已的教学,并对此进行了深刻的反思。

小数乘小数教学反思优缺点【第四篇】

由于本人执教苏教版国标本五年级,其中的1篇教学实录给我很大启示,并按照此教学思路在我班进行了尝试,效果很好。下面是我结合范本和自己的教学实践分享的“小数乘小数教学反思优缺点样例【优推5篇】”,供大家参考和交流。

一、深刻把握教学内容,指导教学设计。

因此,本课的重点和难点都应当在于帮助学生发现和掌握因数中小数位数变化引起积中小数位数变化的规律,形成比较简单的确定积的小数点的方法。而教法上更多的依赖旧知识的迁移类推,让学生自主发现和归纳。

二、创设有效的问题情境,促进算理形成。

教学思考:

1.创设什么情境?

《义务教育数学课程标准(实验稿)》提出“让学生在生动具体的情境中学习数学”。我们知道,数学的来源,一是来自数学外部现实社会的发展需要;二是来自数学内部的矛盾,即数学本身发展的需要。从这个角度出发,数学情境可以分为两种:生活情境,从生活中引入数学;问题情境,从数学知识本身的生长结构出发设置的情境。

所谓“有效“,数学课上的情境创设,应该能为数学知识和技能的学习提供支撑,能为数学思维的生长提供土壤,我们应当根据不同的教学内容,灵活的选择不同的情境。

苏教版教材以计算小明家的房间面积为情境,引出需要学习的小数乘小数的计算题,再让学生进行探索尝试。这样,虽然符合从生活中发现数学、应用数学及解决数学问题的要求,但情境本身的设置对于小数乘小数的算理推导过程,并无实质的作用。相反,小数乘小数,与小数乘整数比较,前者需要同时看两个因数一共有几位小数,而后者只有一个因数是小数,计算方法可以类推,算理本质上是一致的,都可以通过积的变化规律加以验证。所以,小数乘整数的计算方法是小数乘小数计算方法的推导基础,以此知识的生长点作为问题情境是可行的。

因此,本节课我对教材的呈现方式作了调整,首先通过小数乘整数的推理计算,引导学生弄清计算方法。再出示小数乘小数的题目,自主探索。在掌握方法后再去解决实际生活中的一些问题。

2.怎样让问题情境富有“吸引力”?

小数乘小数的最关键的地方是确定积的小数点的位置。适当弱化积的计算过程,重点突出寻找积的小数位数与因数的小数位数的关系,可以保证学生思维的高效性,也避免计算的枯燥无味的感觉。

因此,教学中不能简单的做题目、再总结,做题目、再总结的机械循环。我通过四次反复的出示根据整数乘法的积,,确定小数乘法的积的小数点,每出现一次,都有新的要求,每完成一次,都有新的收获。

教学实践:

一、复习铺垫,沟通联系。

(第一次出现根据整数乘法的积,确定小数乘法的积的小数点,由猜到说理,主要是积的变化规律的算理的迁移运用。)。

生1:一个因数变成了小数。

生2:36缩小10倍,是。

师:那么积的小数点应该点在哪里呢?

生:点在0和8之间。

师:怎么想的?

生1:一个因数缩小10倍,另一个因数不变,积也缩小10倍,所以点在0和8之间。

生2;因数中是一位小数,所以积也是一位小数。

师:那么36×呢?为什么积都是呢?

2、大胆猜测,小心求证。

生(几乎一致):。

预设:用估算的方法,把因数保留整数部分计算,3×2=6,准确的积肯定大于6,不可能是。把因数看作接近它的整数,4×3=12,准确的积比12小,也不会是。

那准确的答案只有了。

3、细化过程,掌握算理。

师:×,列竖式演示出这样的思维过程。

学生完成竖式计算。

师指出:1008是36×28的积,别忘记点上小数点。

师:生活中有很多这样的实际问题,比如,现在人们的生活水平提高了,全国包括扬州还有宝应人民的居住条件也改善了。这是扬州的一座漂亮的居民小区。(出示图片)。

师:×,列竖式时,一般把哪个数写在上面?怎样对齐?

生:末尾对齐。

师:你知道为什么吗?

生:我们实际上是看作115×28计算的,整数是个位对齐,所以它就是末尾对齐。

4、快速口算,提升算法。

师:根据刚才的方法,请你快速找出积的小数点应该点在哪里。已知:482×73=35186,求:482×,×,×。

(第二次出现根据整数乘法的积,确定小数乘法的积的小数点,直接应用积的变化规律,可以减少学生的繁琐计算,同时在快速口算时,体验和发现确定积的小数点位置的简便方法。)。

一起回答:×。

5、回顾比较,归纳方法。

师:通过刚才的计算,你觉得有什么经验,或者是要提醒大家注意的地方的?

师:我把大家的说法归纳成一句口诀,读一读:小数乘法有方法,一算、二数、三点点。

说一说:一算,怎样算?二数,数什么?三点点,怎样点?

三、设置巧妙的思维“陷阱”,提高计算技能。

教学思考:

怎样设计计算课的练习?

本节课学生的基本计算障碍已被扫清,关键是确定积的小数点的位置。单纯的计算训练,往往单调枯燥,索然无味,一些计算策略也无法有效形成。教师应善于剖析学生的错误思维,组织有层次、多形式、突出重点难点关键点的计算练习,让学生亲身体验计算方法的生长过程,设置思维的“陷阱”,激起心理和思维的震撼,从而有效形成计算的技能。

教学实践:

1、帮帮小马虎。

师:说说题目错在哪里?怎样改正?

×          ×  。

2、给积点上小数点。(数学书87页练一练第1题)。

3、等式变形。

(第三次出现根据整数乘法的积,确定小数乘法的积的小数点,不过这次是根据积的位数,确定因数的位数。在开放练习中,更加凸显出因数中小数的位数与积的位数之间的关系,是学生思维认识上的一次升华。)。

预设1:×=。

2、×73=。

3、482×=。

师:在给因数加小数点的时候,什么变了?什么没变?

引出数学小故事:小数点的代价。指出:小数点的代价实际上是什么的代价?(粗心)。

4、我做小判官。

师首先出示:(1)×=4,问:想一想,这一题有没有做错呢?

生1:做错了。因数中一共有3位小数,而积是整数。

生2:没有做错。(直觉,但又说不出理由。)。

师:争持不下,不妨自己计算一下。

师引导大家观察算出的结果,讨论:这个积的小数部分的三位小数到哪里去了?

师小结:数学上也有眼见不为实的情况。

接着出示:(2)×=4,这一题正确吗?

学生纷纷拿出计算本计算,只有几位同学却迅速的举起了手。

师引导:一定要列竖式计算吗?我们让没有计算的同学谈谈经验。

生:不一定。8×1=8,准确的积肯定要比8大,所以不可能是4。

师小结:我们要灵活的选择计算方法。

5、计算效果检测。(书87页练一练第2题)。

四、留下“发人深思”的课堂结尾,延展算法思路。

教学思考:

数学学习总是环环紧扣的,一节课结束了,不是思维的嘎然而止,而应是留有余味,坚持为下节课孕伏思维生长的起点,这是很重要的成功做法。

教学实践:

(第四次出现根据整数乘法的积,确定小数乘法的积的小数点,让学生“跳一跳,摘果子”,为下节课设置思维的生长点。)。

生1:应该是。

生2:应该是。

师:究竟是谁正确呢?我们下节课继续研究,有兴趣的同学可以预习课本88页的内容。

总之,本节课我紧紧抓住积的变化规律来引导学生理解积的小数点的确定方法,摈弃了大题量训练的计算教学方式,努力使自己的设计从更高层次上触动学生的思维,关注学生数学思维的有效生长,为学生的长远发展打好基础。

小数乘小数教学反思优缺点【第五篇】

教材小数乘小数的计算方法,看因数一共有同位小数,再从积的右边起数出几位,点上小数点,当位数不够时,要添“0”补足。而在实际的教学当中,我分为以下三点进行:

学生掌握了小数乘整数的计算方法后,通过议一议、说一说在小组交流中大多数会利用积的变化规律进行推导,把×的因数和分别扩大10倍算出积是96,要使积不变,积就要缩小到96的1/100,所以×=在这个环节,学生初步感知了积的小数数位和因数的小数数位的关系,因数共有几位小数,积就要从右到左点上几位小数。

通过一道×得出一个较为浅显的表象,因而我这里是这样处理这个环节的,我不急着去归纳,而是出示两道计算×和×,让学生在利用×所得的方法进行计算,然后排列出×因数一共有位小数,积也是两位小数,×中因数一共有两位小数,积也有两位小数,×因数一共有四位小数,积也有四位小数,从而在这些例子当中让学生进一步感受到了积的因数的小数位数的关系,进而学生很自然的就归纳出,小数乘小数的计算方法,先按照整数乘法计算,看因数一共有同位小数,再从积的右边起数出几位,点上小数点,当位数不够时,要添“0”补足。

1、突出竖式计算的书写格式,强调在计算时简要的说出计算的算理,如计算×时,要求学生不但要按书写格式书写,而且要求学生说出×,先29×7计算出积,再看因数一共有四位小数,就从积的右边起点上四位小数,位数不够的添“0”补足。

2、突出口算为小数乘法简便运算打基础。

如在课堂上布置了多种常用的、常见的口算,这样不但进一步加深了小数乘小数的计算方法,而且为小数乘法的简便运算作了一个很好的铺垫。

在整节课的学习中,学生开始对学习充满兴趣,积极的思考,运用发现的规律去解决问题,能正确计算小数乘小数,效果还是比较好的!

48 2178154
");