数据分析师的工作总结范文样例【精编8篇】

网友 分享 时间:

【请您参阅】下面供您参考的“数据分析师的工作总结范文样例【精编8篇】”是由阿拉网友精心整理分享的,供您阅读参考之用,希望此例范文对您有所帮助,喜欢就复制下载支持一下小编了!

数据分析师的工作总结【第一篇】

数据分析方法是通过什么方法去组合数据从而展现规律的环节。从根本目的上来说,数据分析的任务在于抽象数据形成有业务意义的结论。因为单纯的数据是毫无意义的,直接看数据是没有办法发现其中的规律的,只有通过使用分析方法将数据抽象处理后,人们才能看出隐藏在数据背后的规律。

数据分析方法选取是整个数据处理过程的核心,一般从分析的方法复杂度上来讲,我将其分为三个层级,即常规分析方法,统计学分析方法跟自建模型。我之所以这样区分有两个层面上的考虑,分别是抽象程度以及定制程度。

其中抽象程度是说,有些数据不需要加工,直接转成图形的方式呈现出来,就能够表现出业务人员所需要的业务意义,但有些业务需求,直接把数据转化成图形是难以看出来的,需要建立数据模型,将多个指标或一个指标的多个维度进行重组,最终产生出新的数据来,那么形成的这个抽象的结果就是业务人员所需要的业务结论了。基于这个原则,可以划分出常规分析方法和非常规分析方法。

那么另一个层面是定制程度,到今天数学的发展已经有很长的时间了,其中一些经典的分析方法已经沉淀,他们可以通用在多用分析目的中,适用于多种业务结论中,这些分析方法就属于通用分析方法,但有些业务需求确实少见,它所需要的分析方法就不可能完全基于通用方法,因此就会形成独立的分析方法,也就是专门的数学建模,这种情况下所形成的数学模型都是专门为这个业务主题定制的,因此无法适用于多个主题,这类分析方法就属于高度定制的,因此基于这一原则,将非常规分析方法细分为统计学分析方法和自建模型类。

常规分析方法不对数据做抽象的处理,主要是直接呈现原始数据,多用于针对固定的指标、且周期性的分析主题。直接通过原始数据来呈现业务意义,主要是通过趋势分析和占比分析来呈现,其分析方法对应同环比及帕累托分析这两类。同环比分析,其核心目的在于呈现本期与往期之间的差异,如销售量增长趋势;而帕累托分析则是呈现单一维度中的各个要素占比的排名,比如各个地市中本期的销售量增长趋势的排名,以及前百分之八十的增长量都由哪几个地市贡献这样的结论。常规分析方法已经成为最为基础的分析方法,在此也不详细介绍了。

统计学分析方法能够基于以往数据的规律来推导未来的趋势,其中可以分为多种规律总结的方式。根据原理多分为以下几大类,包括有目标结论的有指导学习算法,和没有目标结论的无指导学习算法,以及回归分析。

另外无指导的学习算法因为没有一个给定的目标结论,因此是将指标之中所有有类似属性的数据分别合并在一起,形成聚类的结果。比如最经典的啤酒与尿布分析,业务人员希望了解啤酒跟什么搭配在一起卖会更容易让大家接受,因此需要把所有的购买数据都放进来,然后计算后,得出其他各个商品与啤酒的关联程度或者是距离远近,也就是同时购买了啤酒的人群中,都有购买哪些其他的商品,然后会输出多种结果,比如尿布或者牛肉或者酸奶或者花生米等等,这每个商品都可以成为一个聚类结果,由于没有目标结论,因此这些聚类结果都可以参考,之后就是货品摆放人员尝试各种聚类结果来看效果提升程度。在这个案例中各个商品与啤酒的关联程度或者是距离远近就是算法本身了,这其中的逻辑也有很多中,包括apriori等关联规则、聚类算法等。

另外还有一大类是回归分析,简单说就是几个自变量加减乘除后就能得出因变量来,这样就可以推算未来因变量会是多少了。比如我们想知道活动覆盖率、产品价格、客户薪资水*、客户活跃度等指标与购买量是否有关系,以及如果有关系,那么能不能给出一个等式来,把这几个指标的数据输入进去后,就能够得到购买量,这个时候就需要回归分析了,通过把这些指标以及购买量输入系统,运算后即可分别得出,这些指标对购买量有没有作用,以及如果有作用,那么各个指标应该如何计算才能得出购买量来。回归分析包括线性及非线性回归分析等算法。

统计学分析方法还有很多,不过在今天多用上述几大类分析方法,另外在各个分析方法中,又有很多的不同算法,这部分也是需要分析人员去多多掌握的。

自建模型是在分析方法中最为高阶也是最具有挖掘价值的,在今天多用于金融领域,甚至业界专门为这个人群起了一个名字叫做宽客,这群人就是靠数学模型来分析金融市场。由于统计学分析方法所使用的算法也是具有局限性的,虽然统计学分析方法能够通用在各种场景中,但是它存在不精准的问题,在有指导和没有指导的学习算法中,得出的结论多为含有多体现在结论不精准上,而在金融这种锱铢必较的领域中,这种算法显然不能达到需求的精准度,因此数学家在这个领域中专门自建模型,来输入可以获得数据,得出投资建议来。在统计学分析方法中,回归分析最接近于数学模型的,但公式的复杂程度有限,而数学模型是完全自由的,能够将指标进行任意的组合,确保最终结论的有效性。

数据分析师的工作总结【第二篇】

随着2022年钟声的临近,2021年的工作即将进入尾声。在这个特殊的时点,总结过去的工作,计划未来,就显得尤为重要!在过去的时间里,本人在公司各级领导的正确领导下,在同事们的团结合作和关心帮助下,较好地完成了2021年的各项工作任务,在工作能力和思想政治方面都有了更进一步的提高。现将2021年取得的成绩和存在的不足总结如下:

一、思想政治表现、品德修养及职业道德方面。

2021年以来,本人认真遵守劳动纪律,按时出勤,有效利用工作时间;坚守岗位,需要加班完成工作按时加班加点,保证工作能按时完成。爱岗敬业,具有强烈的责任感和事业心。积极主动学习专业知识,工作态度端正,认真负责地对待每一项工作。

二、工作能力和其它方面。

我的工作岗位是数据与产品支持,准确和效率一直都是我的工作宗旨。工作内容大体分为四块:

1.在月初关账期间,要保证各地提报的非派费用和仓租、外包工、叉车租金分摊的准确性与及时性,同时不仅需要审查数据内容填写的规范性,还需要确认各地是否已经提报。汇总完数据后要进行初步分析,将不符合提报要求的费用提取出来并联系提报人进行确认,并判断是否应该提报。将数据提交给结算部门后,结算在核销的时候会有疑问,这些疑问也需要我来进行跟进与反馈。

2.关账结束后要进行合同外议价的分析,这部分分析分为同一线路同一承运商派车次数大于3次的分析和有合同但走合同外议价的分析两部分,前者分析的目的是为了考虑是否要与此线路签合同,而后者的分析目的是更新完善合同的报价。

3.结束合同外议价的分析工作,则需要进行单个to负毛利的分析,该分析数据主要来源于工盘,包括收入明细,成本明细,派车分摊和租车分摊。分析完成需要将结果发给对应的运输经理,查明产生亏损的原因,并提出合理的建议。

4.在以上三部分工作内容如期进行的时候,全月不定时穿插项目初步分析,此部分内容主要使用者为项目经理、客户经理等。

三、存在的不足。

总结2021来的工作,虽然取得了一定的成绩,自身也有了很大的进步,但是还存在着以下不足:

一是工作方式上还只是按部就班,虽然融入了一些自己的看法和改进,但还未提高到更高的层面,没有从管理层的角度去看待问题。

二是由于工作性质,与区域的负责人和调度员会有频繁的联系,但还不能很好的沉着面对,所以沟通交流能力还需要进一步的加强。

三是知识储备还不够,还需要更广泛的学习与增长经验,成为多方面的人才。

2022年我将进一步发扬优点,改进不足,拓宽思路,求真务实,全力做好本职工作。打算从以下几个方面开展工作:

一是加强工作统筹。根据公司领导的年度工作要求,对全年的工作进行具体谋划,明确内容、时限和需要达到的目标,把各项工作有机地结合起来,理清工作思路,提高办事效率,增强工作实效。

二是加强工作作风培养。始终保持良好的精神状态,发扬吃苦耐劳、知难而进、精益求精、严谨细致、积极进取的工作作风。

三是作为运输总部与区域对接人员之一,一言一行都代表着公司的形象。不仅在工作上必须做到精确、严谨,而且在行为品德上要严格要求自己,树立良好的个人形象。所以我要加倍努力的工作为了公司的发展做出自己的贡献。

数据分析师的工作总结【第三篇】

大家了解过证券数据分析师这个职业吗?这是隶属金融管理学的一个专业型非常强的专业,刚刚专业优秀毕业生可以在证券公司从事分析师的工作!以下是:证券数据分析师简历欢迎大家参考!

三年以上工作经验 | 男 | 26岁(1985年10月8日)

居住地:xx

电话:xxx

e-mail:xx@

最近工作 [ x年x个月 ]

公司:xx金融证券有限公司

行业:金融/投资/证券

职位:证券分析师 最高学历

学历:本科

专业:金融学

学校:xx理工大学

在证券公司任职***年,对于股票投资具有深入的研究,善于数据挖掘和财务分析,对于国家政策和经济形势发展具有敏锐的观察力。具有出色的逻辑思维能力和写作能力,曾在知名财经杂志发表文章数篇,得到读者的欢迎。

能够承受巨大的工作强度,抗压能力强,工作责任心高,团队合作意识佳,希望在证券行业继续发展。

求职意向

到岗时间: 一周以内

工作性质: 全职

希望行业: 金融/投资/证券

目标地点: 西安

期望月薪: 面议/月

目标职能: 证券分析师

20xx /x—至今:xx金融证券有限公司[ x年x个月]

所属行业:金融/投资/证券

研发部 证券分析师

1、 负责通过股市报告会、面谈等形式,营销理财服务;

2、 负责分析目标板块的上市公司的基本面,列出投资原因,并给出风险提示;

3、 负责宏观经济、政策走向分析及解读;

4、 负责协助基金经理,对持仓比重、结构、品种做出建议;

5、 负责协助其他分析师进行投资组合的配置。

20xx /x--20xx /x:xx金融证券有限公司 [ x年x个月]

所属行业:金融/投资/证券

市场部 证券分析师

1、 负责为客户提供投资理财咨询;

2、 负责组建及管理投资顾问团队,维护投资渠道;

3、 负责维护客户关系,推广并销售公司的金融理财产品;

4、 负责通过数据、技术面的.分析来进行股票买卖的实盘操作;

5、 负责定期召开投资报告会,培训客户经理的投资分析知识。

20xx /x--20xx /x:xx金融有限公司 [ xx个月]

所属行业: 金融/投资/证券

投资部 证券分析师

2、 负责跟踪****行业动态,并对行业内变化个股做出分析评价;

3、 负责维护客户,为客户提供咨询服务;

4、 负责***基金的交易,并指导交易员完成交易指令;

5、 负责培训下属员工以及分配部门任务。

20x x/x --20xx /x xx理工大学 金融学 本科

语言能力

英语(良好) 听说(熟练),读写(良好)

-->

-->

-->

-->

-->

-->

-->

数据分析师的工作总结【第四篇】

年龄:25。

教育经历:

院校:蓝翔技校。

专业:计算机软件。

学历:专科。

主修课程:

数据库原理、软件工程。

获奖情况:

连续2年获得校三好学生、二等学习优秀奖学金。

全国大学生计算机竞赛市二等奖。

项目经验:

201x、1x-至今。

单位:翰威特咨询公司分公司。

筛选分析调研数据,使用excel处理超过2万个样本数据,具有丰富的数据处理经验;

自我评价:本人性格开朗,思想正直,诚信,稳重。工作认真踏实,责任心强,善于独立思考,分析问题,解决问题。

数据分析师的工作总结【第五篇】

引导语:述职报告采用夹叙夹议的方式,运用叙述和议论,还辅助以适当的说明。今天,网友为大家整理了(*),欢迎阅读与参考!

出处

号角相闻,告别xx业界风云;战鼓催发,迎来更富挑战的xx。站在新一年的起点,**证券继往开来,正确把握券业发展大势,振奋精神、周密运筹,以必胜的信心和有效的准备积极应对挑战,拉开了抢占券业新的战略制高点、以资源深度整合为突破口、以发展缔造新希望的序幕。回首xx年,**证券面对券业严峻的市场形势,面对重大政策变化和券商大规模分化、重组、兼并等因素带来的历史性发展机遇,审时度势,认定“非固实之基无以铸广厦千尺,非坚韧之躯无以搏沧海巨澜”的道理,按照“规范发展,做精做强”工作指导思想和年初股东会、董事会提出的工作任务目标积极推进各项工作,以增收节支、业务转型、强化风险控制等管理工作、加强人力资源建设为侧重点,公司全体干部员工同舟共济、坚定信心、迎难而上、一些业务和工作取得了较大进展。

过去的一年,**证券投行在严峻的证券市场环境下克服重重困难,勇于探索与创新,摸索出一条“以重点行业形成特色经营、做优质项目打造公司品牌”的经营思路。经过不懈的努力,**证券投行实现了股票承销、债券承销、收购兼并三大业务的协同发展,并逐步培育了在基础行业特色与品牌。xx年**投行业务又上一新台阶,1-12月主承销家数排名第三,ipo主承销家数排名第二,总承销金额在行业排名第十二,取得了历史最优成绩。其中,我们承销的开滦精煤项目筹资金额达到亿元,这标志着我司在承揽大型投行项目上实现历史性跨越。

经纪业务扭亏为盈,市场份额逐步上升,从交易所公布的xx年1至11月股票基金交易量同业排名统计数据看,我公司股票基金总交易量的排名为21位,比xx年提高了3位。同时,业务转型取得一定进展,仅今年前11各月,基金销售就比去年同期增长近倍,8月份基金代销资格的取得,使我司基金业务的竞争力得到进一步提升;作为拓展市场、抢占客户资源、实现经纪业务转型的另一项工作,经纪业务今年大力推广了以银证通为主的非现场业务,并初见成效,xx年在银证通客户开户量、交易量上都有大幅增长,银证通交易在营业部交易中的比例比xx年提高了一倍。

内部管理进一步加强,信息技术平台建设进一步推进。按照业务归属,公司精简管理机构与管理岗位,整合资源,充实一线业务部门,提高了公司工作效率。风险控制以审计部牵头,成立了公司风险控制委员会,建立了从立项、决策到 执行、反馈的科学流程与一体化风险控制体系,使风险控制覆盖各项业务的事前、事中、事后各个环节,在实际工作中收到一定成效。公司加大it平台建设投入,启动了集中交易、crm、广域网升级、办公自动化、公司网站升级等大型项目,投资规模是公司成立以来最大的一次,对公司实现可持续发展以及开展创新业务具有重要意义。

告别xx年,回首载浮载沉、激荡变换的业界风云,我们可以毫无愧色地说,**证券广大干部员工风雨与共、顷尽全力奋斗过,众志成城、满怀喜悦收获过。尽管有些工作还不尽如人意,尽管前程还颇多艰险,但路是一步步走出来的,过去留下的缺憾正是我们今后攻坚的着力点。

展望xx,**证券必定会开创更具希望、更富前景的明天。为什么如此断言?这是由外围环境和内在因素综合决定的——券业市场、资本市场乃至宏观经济形势给我们以挑战的同时,也为我们提供了大好的机遇;而**证券初步具备了抓住机遇的素质,充分具备抓住机会的智慧和魄力。

从券业发展外部环境看,xx年,随着宏观调控政策效应进一步释放,经济运行中不稳定、不健康因素得到遏制,宏观经济发展的国内外环境总体继续趋好,面临一些长期结构性矛盾和一些短期问题已引起高层足够重视,并开始着手解决,这为资本市场持续发展提供了良好的条件。我国资本市场是一个新型市场,一方面市场证券化比率和世界平均水平相比明显偏低,有进一步提升的要求和潜力;另一方面,经济增长需要资本市场支持并与之相适应,加之我国企业直接融资比例一直比较低,不仅加大了银行风险,也限制了企业的融资渠道,扩大直接融资已成为当前经济和金融改革的一项重要任务。综合各种外部因素,未来几年,我国证券市场必然呈快速发展态势,新型+转轨的市场,必然会造就一批业界英雄。

从券业发展走势看,经过十多年发展,中国证券市场集聚起来的问题集中爆发,倒逼机制已经在促使制约券业发展的深层次问题逐步得到解决。尽管这一过程对某些券商来说是相当痛苦乃至是灭顶之灾,但从券业发展的整体角度看,经过分化、兼并、重组等券业资源整合,一个健康、富有生命力的市场将脱胎而出,低水平、白热化、死不了也活不痛快的竞争将成为过眼烟云。

面对券业资源整合,自然“有人笑来,有人哭”,濒临外忧内患,**证券完全有笑到最后的潜质。

申报和成功发行,就是监管部门和广大客户对我们的最有力的认可;我们具有逐鹿券业市场的经营基础和良好业绩,在经营管理能力不断提高的前提下,公司各项经营和财务指标基本良好,而且,经过xx年的努力,我们的投行业务、经纪业务实力又有较大提高,在某些方面,**证券已经成为业内的一支劲旅。

在券业资源整合的关键时刻,公司又显示出抢抓机遇的智慧和魄力。xx年末,公司组织力量编制了**证券未来十年发展战略的实施意见;在不同部门、不同层次召开座谈会,针对券业发展趋势深入探讨解决公司资源整合、业务转型等事关未来生存发展的深层次问题,为xx年的发展绘就了攻坚图。可以预见,新的一年,公司将实施一系列在**证券发展史上具有深远影响的变革和创新,新一年的新希望,在年初便已现出曙光。

新起点、新希望。站在xx年的起点,让我们满怀信心,以更清醒的头脑、更旺盛的斗志、更奋发的姿态、更勤奋敬业的精神和更充沛的干劲,向我们的既定目标进发!

述职人:xxx

xx年xx月xx日

-->

-->

-->

-->

-->

-->

-->

数据分析师的工作总结【第六篇】

位于*东南部的福建(三明、泉州、福州、宁德)、江西(南丰、广川)两省山岳地区,有着数量较多的一种以生土为主要建筑材料、生土与木结构相结合并不同程度使用石材的“土堡”建筑。这些土堡建筑以合院式建筑为主,规模宏,造型奇特,结构精巧,或建在海拔较高的山岗(高岗型),或离村庄不远的山坡(坡地型),或建在水田当中(田中型),或土堡与民居建在一起(混合型),与当地其他传统低矮民居组合成小不同的村落,服务于家族或村落的聚居防御需要。它们比福建土楼历史更悠久,既有着悠久的文化历诗统,又与周边自然环境完美融合,构成一组组和谐美妙的景观。其中,福建土堡最具代表性,数量也最多,而福建土堡又以三明市田、尤溪和永安三县留存数量最多、保存最完整、种类最齐全。

从20xx年至20xx年的五年时间里,三明土堡通过土堡课题专项调研、第三次全国文物普查、拍摄土堡资料宣传电视片、召开*福建土堡全国学术研讨会、举办土堡民俗文化节、福建土堡风光摄影展等系列活动,已初步摸清了三明境内土堡的基本情况:

1、土堡的创建历史:产生于隋末唐初,成熟于两宋,盛行于明清,并一直延续至今。

2、土堡的留存数量:200余座,约占总数量的十分之一。

3、范文top100土堡的建筑结构:内通廊式与合院式两种,并以合院式为主。

4、土堡的分布范围:福建、江西两省,并以福建为多;福建省内三明、泉州、福州、宁德四地市,并以三明地区为多;三明市内田、尤溪、永安、宁化、沙县、将乐、清流、明溪、泰宁、三元、梅列十一县(市、区),并以田、尤溪、永安为多。

5、土堡的主要功能:防御为主。

6、土堡的产生原因:生存需要。

二、福建土堡的认定。

关于福建土堡的定义,至今尚未有公开的认定,因此本文的定义只是个人的观点,若有谬误还请方家指正。可以从以下几个方面来探究:

1、三明土堡与土围(江西)、土楼(福建)、围拢屋(粤东)的异同,如下表。

尽管四者之间有差异,但共性是十分明显的,都具有防御性,只师能不同而已,土围、土堡以防御为主,而土楼、围拢屋以居住为主。

2、福建土堡是包括福建土楼在内的*南方乡土防御性建筑的鼻祖。

数据分析师的工作总结【第七篇】

但数据分析技能也是未来必不可少的工作技能之一。在数据分析行业发展成熟的国家,90%的市场决策和经营决策都是通过数据分析研究确定的。

“大数据分析师就是一群玩数据的人,玩出数据的商业价值,让数据变成生产力。”而大数据和传统数据的最大区别在于,它是在线的、实时的、规模海量且形式不规整,无章法可循,因此“会玩”这些数据的人就很重要。

国内某大型招聘平台给出的数据分析师平均薪酬为:9724(取自1139份样本),且北京、上海、广州、深圳、杭州、南京、武汉、成都、长沙为大数据分析师需求量前十的城市。

数据分析师的工作总结【第八篇】

数据分析师大多是支撑运营和决策的,但是大多都是提供数据,分析的较少。我说的分析是给出意见的分析。近期,我也在招聘数据分析师,遇到一些问题,来面试的朋友,要么就是工具的使用者,业务非常不熟悉。要么是就是链条太短,只是做网站端和销售端,对供应链、客服等非常不熟悉。

这个题目就是开放的问一个销售问题,看分析师如何给出相关的意见或者建议。当然这不是分析范畴,但是我觉得分析师既然是做运营支撑、甚至决策,那么一些基础的销售理念是应该有的。

题目:100斤苹果怎么卖,可以卖的钱又多,卖的又快?

开题:此题目意在说如何从商品的角度去考虑如何销售的问题,传统的销售方式就是经典的4p理论。渠道,商品,价格,促销。而此问题意在从商品,价格,促销的角度去问面试者问题。

题注:

1. 如果回答者答的问题说的过多,比如说渠道如何做,如果做售后,如何二次营销,范围就扩大了。

2. 如果回答者的回答过于泛,或者理论的东西比较多,或者听着非常正确而不给出解决方案,那不适合一线分析师。

上面两项是减分项。

刀刀的解答:

1、渠道是重要

用户考虑暂且放在渠道里,因为用户必须依赖渠道实现链接。但就此问题来说,有点跑题,问的是卖苹果,用户考虑一般先考虑需求和消费场景,所以不分享渠道的做法。

2、商品自己分堆

最简单,一堆贵,一堆便宜。苹果不分拣。卖个差不多再重分,46开分。

解读:利用价格做出价格歧视的感念,同时告诉消费者4的商品比较好卖,这样一个明确的指向。

3、商品拆分

按好坏分堆,好苹果贵30%。其余的分两堆,一般的常规卖,最差的贵50%,并贴上标签如涩苹果之类。

解读:劣质商品只是品质不好,不是不能卖高价,关键是你要告诉别人这是稀缺的。真实说明商品特征,不要做多,好的商品还是要高价的,稀缺商品要更贵。一般的商品就这样买。但是注意结合第四条。

4、时间因素

一般早上要比晚上贵,水果尽量当天卖完,所以在晚上8点后开始半价卖。

解读:快和多都是必须的,水果隔夜很多都会坏。晚上8点是大家出来遛弯的时候,可以做清仓了。不留呆滞库存是关键,高周转是关键。手里最好留的是钞票,而不是货物。

5、地点

这个本来不想说,还是说一下,火车站和汽车站绝对卖不出去,摊位没有。最重要的是你见过这种地方卖水果的销售有好的么?好地方在地铁口,菜市口,学校门口。

解读:人流多并不代表需求好,菜市场门口绝对比火车站好。为什么,火车站贵这是大家都知道的,再者,谁没事到火车站去买水果啊。菜市场还是做长久生意的地方,学校门口,地铁口大家多观察就知道了。

商品这个东西可以玩的很多。留几句话:

不要卖货源不稳定的某类商品。

坚决下架无法销售占位置的`商品。

主推非标准品。

流行品一定是打折卖的。

via:庖丁的刀(外贸电商分析师。关注外贸电商b2c,国内大型零售电商平台,资深数据分析师)

随着大数据概念的火热,数据科学家这一职位应时而出,那么成为数据科学家要满足什么条件?或许我们可以从国外的数据科学家面试问题中得到一些参考,下面是77个关于数据分析或者数据科学家招聘的时候会常会的几个问题,供各位同行参考。

1、你处理过的最大的数据量?你是如何处理他们的?处理的结果。

2、告诉我二个分析或者计算机科学相关项目?你是如何对其结果进行衡量的?

3、什么是:提升值、关键绩效指标、强壮性、模型按合度、实验设计、2/8原则?

4、什么是:协同过滤、n-grams, map reduce、余弦距离?

6、如何设计一个解决抄袭的方案?

7、如何检验一个个人支付账户都多个人使用?

8、点击流数据应该是实时处理?为什么?哪部分应该实时处理?

11、你是如何处理缺少数据的?你推荐使用什么样的处理技术?

12、你最喜欢的编程语言是什么?为什么?

13、对于你喜欢的统计软件告诉你喜欢的与不喜欢的3个理由。

14、sas, r, python, perl语言的区别是?

15、什么是大数据的诅咒?

16、你参与过数据库与数据模型的设计吗?

17、你是否参与过仪表盘的设计及指标选择?你对于商业智能和报表工具有什么想法?

18、你喜欢td数据库的什么特征?

22、什么是哈希表碰撞攻击?怎么避免?发生的频率是多少?

23、如何判别mapreduce过程有好的负载均衡?什么是负载均衡?

26、为什么朴素贝叶斯差?你如何使用朴素贝叶斯来改进爬虫检验算法?

27、你处理过白名单吗?主要的规则?(在欺诈或者爬行检验的情况下)

28、什么是星型模型?什么是查询表?

29、你可以使用excel建立逻辑回归模型吗?如何可以,说明一下建立过程?

33、普通线性回归模型的缺陷是什么?你知道的其它回归模型吗?

34、你认为叶数小于50的决策树是否比大的好?为什么?

35、保险精算是否是统计学的一个分支?如果不是,为何如何?

36、给出一个不符合高斯分布与不符合对数正态分布的数据案例。给出一个分布非常混乱的数案例。

37、为什么说均方误差不是一个衡量模型的好指标?你建议用哪个指标替代?

42、你如何建议一个非参数置信区间?

44、什么是归因分析?如何识别归因与相关系数?举例。

45、如何定义与衡量一个指标的预测能力?

47、如何创建一个关键字分类?

48、什么是僵尸网络?如何进行检测?

50、什么时候自己编号代码比使用数据科学者开发好的软件包更好?

52、什么是概念验证?

53、你主要与什么样的客户共事:内部、外部、销售部门/财务部门/市场部门/it部门的人?有咨询经验吗?与供应商打过交道,包括供应商选择与测试。

54、你熟悉软件生命周期吗?及it项目的生命周期,从收入需求到项目维护?

55、什么是cron任务?

56、你是一个独身的编码人员?还是一个开发人员?或者是一个设计人员?

57、是假阳性好还是假阴性好?

58、你熟悉价格优化、价格弹性、存货管理、竞争智能吗?分别给案例。

59、zillow’s算法是如何工作的?

60、如何检验为了不好的目的还进行的虚假评论或者虚假的fb帐户?

61、你如何创建一个新的匿名数字帐户?

62、你有没有想过自己创业?是什么样的想法?

63、你认为帐号与密码输入的登录框会消失吗?它将会被什么替代?

65、哪位数据科学有你最佩服?从哪开始?

66、你是怎么开始对数据科学感兴趣的?

67、什么是效率曲线?他们的缺陷是什么,你如何克服这些缺陷?

68、什么是推荐引擎?它是如何工作的?

69、什么是精密测试?如何及什么时候模拟可以帮忙我们不使用精密测试?

70、你认为怎么才能成为一个好的数据科学家?

71、你认为数据科学家是一个艺术家还是科学家?

73、给出一些在数据科学中“最佳实践的案例”。

74、什么让一个图形使人产生误解、很难去读懂或者解释?一个有用的图形的特征?

75、你知道使用在统计或者计算科学中的“经验法则”吗?或者在商业分析中。

76、你觉得下一个20年最好的5个预测方法是?

-->

-->

-->

-->

-->

-->

-->

48 1887645
");