青岛版七年级数学教案全册带答案大全5篇

网友 分享 时间:

【导读预览】此篇优秀范文“青岛版七年级数学教案全册带答案大全5篇”由阿拉题库网友为您整理分享,以供您参考学习之用,希望此篇资料对您有所帮助,喜欢就复制下载支持吧!

青岛版七年级数学教案全册带答案篇1

1、《同位角、内错角、同旁内角》是人教版新课标实验教材初中数学七年级下学期第五章《相交线与平行线》的第一节第三课时内容。

2、地位和作用

两线四角 承上 三线八角 启下 平行线的判定和性质。

二、教学目标设计

(一)

1、明确构成同位角、内错角、同旁内角的条件,理解同位角、内错角、同旁内角的概念。

2、结合图形识别同位角、内错角、同旁内角。

3、通过变式或复杂图形找出同位角、内错角、同旁内角,培养学生的识图能力。让学生找到在千变万化的图形中的不变之处,能够抓住概念的重点。

(二)

1、从复杂图形分解为基本图形过程中,渗透化繁为简,化难为易的化归思想,从图形变化过程中,使学生认识几何图形的位置美。

2、通过观察,探究“三线八角”的过程培养学生的观察、抽象能力;发展图形观念,积极参与数学活动与他人合作交流的意识。

三、教学重点及难点:

(一)重点:根据图形识别哪两条直线被哪条直线所截构成的同位角、内错角、同旁内角。

(二)难点:在复杂图形中辨别同位角、内错角、同旁内角。

(三)教学疑点及解决办法:

正确理解新概念,引导学生讨论、归纳三类角的特征,并以练习加以巩固。

四、教法、学法

(一)教法:教学有法,但无定法,一节课中不能是单一的教法,在这节课中我主要采用的教法有:观察法、讲授法、启发教学法等。

(二)学法:以复习旧知识创设情境引入课题,以指导阅读、设计问题、小组讨论学习新知,以变式练习巩固新知。在这节课中使用的学法主要有:合作学习法、探究法、观察发现法、练习法、讨论法等。

青岛版七年级数学教案全册带答案篇2

本册教材共安排10个单元。

数与代数领域的内容,是本册教材的重点。教材一共安排了七个单元,大致可以分成四个部分。

一是数的认识安排了一个单元,即第九单元认识百分数,主要教学百分数的意义,百分数和分数、小数的互相改写,以及求一个数是另一个数的百分之几、求百分率的实际问题。

二是数的运算安排了三个单元,包括第三单元分数乘法,第四单元分数除法,第六单元分数四则混合运算。其中,第三、四单元主要教学分数乘、除法的计算法则,求一个数的几分之几是多少及其相应的分数除法实际问题;分数连乘、连除、乘除混合;同时在分数乘法单元中还安排了倒数的认识。第六单元主要教学分数四则混合运算,以及稍复杂的分数乘法实际问题。

此外,还安排了第七单元解决问题的策略,主要教学用假设(置换)的策略分析数量关系,解决实际问题。

三是式与方程安排了一个单元,即第一单元方程,主要教学解形如 和 的方程,以及相应的列方程解决实际问题。

四是正比例和反比例安排了一个单元,即第五单元认识比,主要教学比的意义,比的基本性质和化简比,以及应用比的有关知识解决实际问题(主要是按比例分配的实际问题)。

空间与图形领域安排了一个单元,即第二单元长方体和正方体,主要教学长、正方体的特征和展开图,体积、容积单位以及体积、容积单位的进率,长、正方体的表面积和体积的计算。

统计与概率领域安排了一个单元,即第八单元可能性,主要教学怎样求事件发生的可能性。

第十单元安排了本册教学内容的整理与复习。

实践与综合应用领域主要是结合单元教学内容安排了3次实践活动,分别是表面积的变化、大树有多高、算出它们的普及率。

表面积的变化是结合长方体和正方体的教学安排的,主要是通过拼长方体或正方体的活动,研究表面积变化的规律。大树有多高是结合认识比的教学安排的,主要是通过测量同一时间,同一地点竿高与影长,发现竿高与影长的比的比值相等的规律,并运用这一规律解决一些简单的实际问题。算出它们的普及率是结合认识百分数的教学安排的,主要是通过调查和统计本班同学家庭中电话和电脑的普及率,经历收集、整理数据,分析、解释数据的过程,进一步积累统计活动的经验。这些活动,都具有小课题研究的特点,有利于学生进一步加深对所学知识的理解,积累数学活动的经验,发展数学思考和解决实际问题的能力。

此外,教材结合教学内容,编排了5个你知道吗,介绍一些数学史知识,以及与数学知识有关的社会常识,以拓宽学生的视野,培养学生对数学的兴趣。还编排了11道思考,进一步加大教材的弹性空间,以满足部分学有余力的学生的发展需要。

青岛版七年级数学教案全册带答案篇3

本节课是七年级下学期的内容,是在七年级上册学习过线、角的有关知识的基础上,进一步研究两条直线位置关系的第一课时。对顶角是几何求解、证明中的一个基本图形,同位角、内错角、同旁内角的学习是平行线条件和平行线的特征的基础,所以本节内容相对简单,但又非常重要。

《相交线》,学生平生第一次遇到几何推理,而且要用数学符号语言表达出逻辑推理的过程,其难度是可以想象的,我采用“双主互动”教学模式进行教学,经过这一周的攻坚战,充分调动学生的主动性,学生的畏难情绪正在渐渐消失,他们从迷茫中慢慢理顺着思路,我看到课堂上一双双眼睛渐渐明亮起来,学生们从几何学习的“悟”中品味到了一点点数学的简洁美。

1、 适时多给学生唱赞歌,激励学生的求知欲;学生学得轻松一些。

2、 在几何入门教学中,可递进式的逐步提高逻辑推理的严密性;为学生留下思维的缓冲地带,不可一步到位。

3、 精心备好几何入门课的同时,并根据学生的学情及时调整优化;使之最贴近学生;练习题作业题的设计上要多下功夫,体现从单一到运用再到综合的循环上升。

4、 多对学生的错题进行辨析,多对学情分析反馈;

我想突破求新,希望引入设计能比较自然的引出概念并揭示内涵。一开始有个问题纠缠着我,那就是对顶角的大小关系是由位置关系决定的,但是我刚上课就让大家画大小相同的角,合不合乎逻辑。经过反复揣摩,我终于下定决心仍然如此设计。原因是我想首先学生是47中重点班的学生,加上该学校在搞自学模式,所以不会不预习,所以他们会自然想到作角两边的反向延长线得到所求角,另外作反向延长线的过程就是位置决定大小关系的过程,这在他们的潜意识里存在了。再者我想作为区级观摩课,大家都想听听新鲜的东西,哪怕它不一定好,但至少给各位老师一个讨论的话题和空间,这样就算是课上失败了,也是有所值。于是开头就定下来了。

对于学生上黑板作出的等角,我立即强调相等是观察想象的结果,还需要进一步说明。对顶角的概念出来后,立即找到生活原型,以加强认识,联系生活。在辨别给出图形是否为对顶角的一组题目中,果然如课前所料,学生的几何语言运用不够熟练、严谨,我耐心地纠正,原因是几何开始一定要让学生重视几何语言的表述,养成好习惯。在这个题目中我始终让学生对照定义辨别,加强认识。在第二个问题中,对于如何有条理地不重不漏地找对应角这个问题涉及分类策略问题,为防止跑题,所以简单提及,并未在课堂上解决。

探究对顶角相等这个性质是本课的重难点,所以我的设计是先画图量角,让学生有个感性认识,同时让学生认识到度量是有误差的,所以叫学生记下角的读数,提出可不可以根据一个角的度数,计算出其对顶角的度数这样一个问题。其实这个问题设计是承上启下的,因为证明比较困难,所以通过具体的度数计算以作铺垫。结果证明这个设计是利于学生的思考的,因为在证明时我听到他们说出“和刚才计算一样”的话。

练习题的设置一来是巩固,二来是让学生体会转化思想。圆锥顶角的测量设计是学生很感兴趣的,它具有相当的挑战性。在预设中,学生会有不同的设计,结果也是如此,他们想了很多和本节课知识联系不大的设计,比如测母线长和底面圆的直径并还原画出横截面等腰三角形,然后测顶角等等,反应了学生思维的灵活性,为鼓励求异思维和创新思想,我对此表示认可和鼓励。

由于课前我精心准备,因此本节课堂预设是充分的,课堂生成是自然的。通过这节课让我体会到越是看起来简单的课,越是要精心钻研教材,挖掘其在教材中的地位和蕴含的数学思想。

课堂教学永远是动态的辩证的,对于这样“反传统”的引入设计到底弊利几何,在圆锥顶角测量中要不要引导学生想到利用对顶角知识?给定直尺这样的工具到底是引导还是暗示都需要反复考虑,合理取舍。希望自己能通过公开课公开暴露问题,以求更多的同行给我更多的建议和帮助。

青岛版七年级数学教案全册带答案篇4

1.知识与技能: 了解命题、公理、定理的含义;理解证明的必要性.

重点与难点

1.重点:知道什么是公理,什么是定理

2.难点:理解证明的必要性.

教学过程

一、复习引入

二、探究新知

我们已经知道下列命题是真命题:

一条直线截两条平行直线所得的同位角相等;

两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;

全等三角形的`对应边、对应角相等.

在本书中我们将这些真命题均作为公理.

1、教师讲解:请大家看下面的例子:

当n=1时,(n2-5n+5)2=1;

当n=2时,(n2-5n+5)2=1;

当n=3时,(n2-5n +5)2=1.

[答案:不正确,因为3-5,但32(-5)2]

(三)例题与证明

教师板书证明过程.

三、随堂练习

课本p66练习第1、2题.

四、课时总结

1、在长期实践中总结出来为 真命 题的命题叫做公理.

2、用逻辑推理的方法证明它们是正确的命题叫做定理

青岛版七年级数学教案全册带答案篇5

教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。下面网友为大家分享初中数学教案设计,欢迎大家参考借鉴。

教学目标

1.理解二元一次方程及二元一次方程的解的概念;

3.学会把二元一次方程中的一个未知数用另一个未知数的一次式来表示;

4.在解决问题的过程中,渗透类比的思想方法,并渗透德育教育。

教学重点、难点

重点:二元一次方程的意义及二元一次方程的解的概念.

教学过程

1.情景导入:

2.新课教学:

3.合作学习:

4.课堂练习:

1)已知:5xm-2yn=4是二元一次方程,则m+n=;

2)二元一次方程2x-y=3中,方程可变形为y=当x=2时,y=_

5.课堂总结:

(1)二元一次方程的意义及二元一次方程的解的概念(注意书写格式);

(2)二元一次方程解的不定性和相关性;

作业布置

本章的课后的方程式巩固提高练习

48 654659
");