2023年体积单位间的进率教案【实用4篇】
【导读预览】此篇优秀范文“2023年体积单位间的进率教案【实用4篇】”由阿拉题库网友为您整理分享,以供您参考学习之用,希望此篇资料对您有所帮助,喜欢就复制下载支持吧!
体积单位间的进率教案【第一篇】
:苏教版义务教育教科书第19页例12、“练一练”、练习四第9~14题。
1.使学生经历1立方分米=1000立方厘米、1立方米=1000立方分米的推导过程,明白相邻的两个体积单位之间的进率是1000的道理。
2.会应用对比的方法,记忆并区分长度单位、面积单位和体积单位,掌握它们相邻两个单位间的进率。
3.会正确应用体积单位间的进率进行名数的变换,并解决一些简单的实际问题。
根据进率进行相邻体积单位的换算。
:课件棱长是1分米的正方体纸盒
一、复习导入
提问:“1平方分米等于多少平方厘米?想想是怎么推导出来的?请画在边长是1分米的正方形纸上.”
学生6人一组,回忆并再次经历1平方分米=100平方厘米的推导过程.
(2)展示学生的推导过程,可请1~2名学生代表他们的小组上台述说,并将1平方分米=100平方厘米的示意图──将边长1分米的正方体纸盒画上100个边长是1厘米的小正方形展示出来.
二、探究新知
1、推导1立方分米=1000立方厘米
(1)猜猜看,1立方分米等于多少立方厘米呢?
你们能应用类似的方法推导出来吗?
要求每个小组将推出来的结果用1立方分米的正方体纸盒表示出来.
学生6人一组,进行探索、推导.教师巡视各组情况并进行指导:让每个学生在1平方分米的纸上画出100个小格,然后贴在棱长1分米的正方体盒块的6个面上.这样,就得到一个1立方分米=1000立方厘米的数学模型。
(2)展示推导过程
请1~2名学生上台述说他们的推导过程:正方体棱长1分米,也就是10厘米,体积就是(10×10×10)立方厘米.并将他们做好的模型进行展示。
(2)展示推导过程
请1~2名学生上台述说他们的推导过程:正方体棱长1分米,也就是10厘米,体积就是(10×10×10)立方厘米.并将他们做好的模型进行展示.
(3)全班归纳总结:教师用课件动态展示将一个棱长1分米的正方体分割成1000个棱长1立方厘米的过程,并在示意图下醒目地写上:1立方分米=1000立方厘米。(或写在黑板上)
3.推导1立方米=1000立方分米
(1)提问:“不用操作,你能想出1立方米等于多少立方分米吗?”
(2)学生独立思考.可提示:在脑子里想一个棱长是1米的正方体。再将这个正方体分割成棱长是1分米的小正方体,想想可分割多少个?
(3)学生先在小组交流自己的想法,然后在全班交流,师生共同归纳出:1立方米=1000立方分米
教师用课件显示出来(或写在黑板上)。
4.总结相邻两个体积单位间的进率。
(1)提问:你学过哪些体积单位?请按从高到低的`顺序把它排列出来,然后说出每个体积单位的相邻单位。
(2)引导学生观察:1立方分米=1000立方厘米
1立方米=1000立方分米
并想一想:相邻两个体积单位之间的进率是多少?想好后在书上填空。
5.构建长度、面积和体积单位的计量系统.
(1)让学生说一说,到目前为止,所学的长度、面积和体积单位各有哪些,它们分别是计量物体的什么的?
(长度单位是用来计量物体长度的;面积单位是用来计量物体表面大小的;体积单位是用来计量物体所占空间大小的.)
(2)提问:“长度、面积和体积单位,它们相邻两个单位间的进率相同吗?”学生回答后将书上第31页上的表格填完整,集体订正。
三、练习应用
1、完成练一练
引导学生认真审题,独立解答。
集体交流,指名说说换算思路。
2、完成练习四第9题。
学生独立完成表格。
长度单位、面积单位、体积单位有什么联系和区别?这三类单位的进率各有什么特点?
3、完成练习四第10题
学生独立完成,集体订正
引导学生说说面积单位换算与体积单位换算的区别。交流
引导学生归纳将高级单位的名数改写成相邻的低级单位的名数的一般方法(师板书):
高级单位的名数×1000=相邻的低级单位的名数
4、完成练习四第11、12题。
四、全课总结
引导学生回忆本节课所学主要内容。回忆时可按本节课所学知识的顺序来叙述。
本节课学习了体积单位之间的进率,知道1立方米=1000立方分米,1立方分米=1000立方厘米;会应用体积之间的进率进行体积单位名数的改写。
五、作业
练习四第13、14题
体积单位间的进率教案【第二篇】
1、了解并掌握体积单位间的进率。
2、理解并掌握体积高级单位与低级单位间的化和聚。
3、培养学生认真审题的习惯,使学生在解决实际问题时,能准确地运用单位间的化聚法进行计算。
体积单位间的进率和单位之间的互化
一、导入
1、同学们,我们学过哪些计量单位?它们相邻之间的进率是多少?,现在我们交流一下。
2、学生交流:有长度单位间的进率、面积单位间的进率、质量单位间的进率、。
3、思考回答:你觉得他的如何?有什么需要补充的?如何进行单位间的互化?
4、猜想今天我们学习的相邻体积单位间的进率可能是多少?
二、自主探究、学习新知
(一)探究立方分米与立方厘米间的进率
1、指导学生分组进行探究,
①棱长1分米的正方体的体积是多少?
②棱长10厘米的正方体的体积是多少?
③1立方分米与1000立方厘米,哪个大?为什么?
2、课件:
①教师1立方分米的正方体,一个标上棱长1分米,一个标上棱长10厘米,供学生观察。
②让学生可以观察分析,从而为得出结论感官上的支持。
3、交流学习结果,分组汇报:
因为1分米=10厘米,所以棱长是1分米的正方体也可以看作是棱长10厘米的正方体。1分米×1分米×1分米=1立方分米
10厘米×10厘米×10厘米=1000立方厘米
所以:1立方分米=1000立方厘米
4、让学生在回顾一下思维的过程,再说说自己的理解。
a、一个棱长1分米的正方体,体积1×1×1=1立方分米,这个正方体的棱长也可以想成10厘米,体积10×10×10=1000立方厘米,所以1立方分米=1000立方厘米。
b、1立方分米的正方体,每层有10×10=100(个)1立方厘米的小正方体,10层有100×10=1000(个),所以是1000立方厘米。
学生讨论:一个棱长1分米的正方体,体积1×1×1=1立方分米,这个正方体的棱长也可以想成10厘米,体积10×10×10=1000立方厘米,所以1立方分米=1000立方厘米。
教师课件演示:1立方分米的教具,每层有10×10=100(个)1立方厘米的小正方体,10层有100×10=1000(个),所以是1000立方厘米。
(二)独立探究立方米与立方分米之间的进率
1、教师提问:立方米与立方分米之间的进率也是1000,用什么方法可以验证自己的想法是正确的呢?
教学1立方米=1000立方分米教学方法同上观察1立方米=1000立方分米,1立方分米=1000立方厘米,你有什么发现?(板书:每相邻两个体积单位间的进率是1000)
2、学生自己尝试解决问题
3、交流各自的思维过程:
棱长1米的正方体的体积是1立方米,而1米=10分米,所以10分米×10分米×10分米=1000立方分米。
所以1立方米=1000立方分米(板书)
4、:相邻的两个体积单位之间的进率是1000。
5、比较长度单位、面积单位、体积单位之间的进率,它们有什么不同之处?
三、解决实际问题,巩固所学方法
1、教学例1:立方米是多少立方厘米?
2400立方厘米是多少立方分米?
(1)学生尝试练习,在书上完成。
(2)交流方法:高级单位的数改写成低级单位的数,要乘进率,小数点向右移动对应的位数;低级单位的数 改写成高级单位的数,要除以进率,小数点要向左移动对应的位数。
2、完成47页做一做
学生独立作业时.提醒学生要认真审题.请学生说一说相邻两个面积单位的进率是多少。
四、全课
今天的学习中你有什么收获?学到了什么?
五、布置课堂作业
完成练习八2题.5题
体积单位间的进率教案【第三篇】
体积单位间的进率(课本第34—35页内容)。
1、通过体积单位之间的进率的指导,使学生掌握体积单位之间的进率,并会进行名数的 改写。
2、使学生学会用名数的改写解决一些简单的实际问题。
3、培养学生根据具体情况灵活应用不同的单位进行计算的能力。
掌握名数的改写方法。
1、填一填。
1米=( )分米
1分米=( )厘米 1平方米=( )平方分米
1平方分米=( )平方厘米
2、说一说常用的体积单位有哪些?
1、学习体积单位间的进率。
(1)老师出示教材第34页例2:一个棱长为1dm的正方体,体积是1dm3。 想一想:它的体积是多少立方厘米?
(2)学生读题,理解题意。
(3)老师出示棱长为1dm的正方体模型。
提问:它的体积用分米作单位是1dm3,如果用厘米作单位,这个正方体的棱长是多少厘米?(棱长是10cm)
(4)计算。
请学生想一想,根据正方体体积的计算公式,能不能算出这个正方体体积是多少立方厘米? 学生先交流,再独立完成,然后请学生说出计算方法和计算过程,学生可能会说: ①如果把正方体的棱长看作是10cm,就可以把它切成1000块1cm3的正方体。 ②正方体的棱长是1dm,它的底面积是1dm2,也就是100cm2,再根据底面积×高,也就是100×10=1000cm3,得出它的体积。
老师根据学生的回答,板书:v=a3 10×10×10=1000(cm3) 1dm3=1000cm3
(5)根据推导,请学生说出立方分米和立方厘米之间的进率是多少? 1立方分米=1000立方厘米(老师板书)
(6)你们能够推算出1立方米和1立方分米的关系吗?学生尝试完成。
老师板书:1立方米=1000立方分米
(7)观察板书内容。
想一想:相邻两个体积单位之间的进率存在着怎样的关系?通过观察,学生发现:相邻的两个体积单位之间的进率都是1000。
2、体积单位,面积单位,长度单位的比较。
(1)长度单位:米、分米、厘米,相邻两个单位之间的进率是十。
(2)面积单位:平方米、平方分米、平方厘米,相邻两个单位之间的进率是一百。
(3)体积
单位:立方米、立方分米、立方厘米,相邻两个单位之间的进率是一千。
3、学习体积单位名数的改写。
(1)回忆:怎样把高级单位的名数变换成低级单位的名数?(要乘进率)怎样把低级单位的名数变换成高级单位的名数?(要除以进率)
(2)学习教材第35页的例3。
板书:(1)3、8m3是多少立方分米?
(2)2400cm3是多少立方分米? 请学生尝试独立解答,老师巡视。 指名让学生说一说是怎样做的。
板书:3、8m3=(3800)dm3
2400cm3=(2、4)dm3 想: 1m3 =( )dm3
想:( ) cm3=1dm3 (3)学习教材第35页的例4。 出示例4,让学生先读题,理解题意:明确箱子上的尺寸是这个长方体的长、宽、高。请学生说出这个箱子的长、宽、高各是多少? 学生独立思考,然后解答,指名板演。 v=abh=50×30×40=60000(cm3)=60(dm3)=0、06(m3)
巩固练习完成课本第35页的“做一做”第1、2题。学生完成后,要求他们口述解答的过程。第2题指名学生板演。
今天我们学习了哪些内容?你有什么收获?
体积单位间的进率 长度单位:1米=(10)分米
1分米=(10)厘米 面积单位:1平方米=(100)平方分米
1平方分米=(100)平方厘米 体积单位:1立方米=(1000)立方分米
1立方分米=(1000)立方厘米
体积单位间的进率教案【第四篇】
知识目标
使学生经历1立方分米=1000立方厘米、1立方米=1000立方分米的推导过程,理解相邻的两个体积单位间的进率是1000的道理。
能力目标
能够采用对比的方法,记忆并区分长度单位、面积单位和体积单位。
情感目标
培养学生的学习迁移能力和探究能力,使学生会应用“猜想-验证”的方法解决数学问题。
体积单位的进率。
体积单位的进率的化聚。
一、复习引入
1.填空:
①长方体体积=();
②正方体体积=()。
③常用的体积单位有()、()、();
师:你知道每相邻的两个体积单位之间的进率是多少吗?今天我们就学习体积单位间的进率。(板书课题)
合作探究
二、课程内容
1.体积单位间的进率。
(1)出示:1个棱长是1分米的正方体木块。
图中是一个棱长为1分米的正方体,体积是1立方分米。想一想,它的体积是多少立方厘米呢?
提问:
①当正方体的棱长是1分米时,它的体积是多少?
②当正方体的棱长是10厘米时,它的体积是多少?
③而1分米是多少厘米?1立方分米等于多少立方厘米?
小组合作填表:
《体积单位间的进率》教学设计
小组汇报结论:1立方分米=1000立方厘米
同理得出:1立方米=1000立方分米
小结:相邻两个体积单位之间的进率都是1000。
(2)将长度单位、面积单位、体积单位加以比较:
先让学生填后并比较这三类单位相邻两个单位间的进率有什么不同?为什么?
(3)学习体积单位名数的改写。
思考:①怎样把高一级的体积单位的.名数改写成低一级的体积单位的名数?
②怎样把低一级的体积单位的名数改写成高一级的体积单位的名数?
出示例题3:立方米是多少立方分米?2400立方厘米是多少立方分米?
写成如下形式:
立方米=(3800)立方分米2400立方厘米=()立方分米
⒊出示例4:看见你得到哪些信息?
⑴这个包装箱的体积是多少?
v=50×30×40
=60000cm3
=60dm3
=
⑵大家想一想,问题中没有要求我们最终用什么单位,你选择哪一个?为什么?
如果出现这样答,你必须选择那个答案?
答:这个牛奶包装箱的体积是m3。
⑶你还有其他的途径求出体积为。先转化单位,再计算。
一根长方体钢材,长米,横截面是一个边长5厘米的正方形。每立方分米钢重千克,这根钢材重多少千克?
小结今天学习的内容。
在具体的解决问题中,要根据题目的要求转化体积单位,还要注意已知条件单位之间的统一。
体积单位间的进率
1立方分米=1000立方厘米
1立方米=1000立方分米