参加数学建模心得体会范文【热选8篇】
参加数学建模心得体会【第一篇】
数学建模是应用数学的一种重要研究方法,通过数学模型来描述和分析实际问题。为了促进学术交流和经验分享,在数学建模领域举办会议已经成为常态。最近,我有幸参加了一场数学建模会议,此次心得体会将分为五个方面进行讨论。
首先,数学建模会议提供了一个学术交流的平台,使得来自不同学术领域的研究人员能够相互学习和交流。会议期间,我有机会听取了来自各个领域的专家学者的报告,了解到不同领域的最新研究成果和发展趋势。这种跨学科的交流对于推动数学建模的发展起到了积极的作用,让我们有机会从更广泛的角度思考和解决实际问题。
其次,数学建模会议提供了一个分享经验和方法的机会。在会议期间,我结识了很多来自不同地区和国家的同行,他们分享了他们在数学建模过程中遇到的问题和解决方法。这使得我深刻认识到,在数学建模的过程中,经验和方法的分享非常重要。不同的研究者可能会有不同的问题处理思路和解题方法,通过交流和讨论,我们能够更好地完善和改进自己的研究方法。
第三,数学建模会议对于培养科研合作意识和团队精神非常有益。在数学建模的过程中,往往需要多个研究人员的合作和协同工作。会议的举办为我们提供了一个与他人合作的机会。通过与其他研究者交流和讨论,我们能够加深对合作的认识,并学会如何与他人进行有效的协作。这对于培养团队精神以及提高科研工作效率有着积极的影响。
第四,数学建模会议还举办了一些专题讨论和研讨会,为与会者提供了进一步深入研究和探讨特定问题的机会。这些讨论和研讨会往往是研究者之间进行深入交流和合作的重要平台,能够更为细致地讨论问题,并从不同的角度探索解决方案。对于特定问题的研究和讨论能够促进我们对该问题的理解和分析,进一步提高我们的研究水平和能力。
最后,数学建模会议还提供了一个展示研究成果和交流思想的机会。在会议期间,我有机会向其他研究者展示自己的研究成果,并与他们进行深入的讨论和交流。这种展示和交流的机会不仅可以增加学术影响力,还能够获得其他研究者的宝贵意见和建议,进一步完善和改进自己的研究成果。
综上所述,数学建模会议是一个学术交流和经验分享的平台。通过参加数学建模会议,我有机会与其他研究人员进行交流和合作,共同推进数学建模领域的发展。这次会议不仅使我受益匪浅,也为我提供了一个更广阔的学术视野和思维方式。我相信,在今后的学术研究中,我会将这次会议的经验和体会运用到实践中,并不断完善和提高自己在数学建模领域的研究能力。
参加数学建模心得体会【第二篇】
近期,我参加了一场数学建模会议,此次会议不仅让我深入了解了数学建模的基本概念和方法,还加深了我对数学建模在实践中的作用的认识。在会议中,我通过与不同领域的专家和同行的交流,探讨了许多关于数学建模的话题,获得了宝贵的心得体会。在此,我将就本次数学建模会议给我带来的启发和感悟进行总结。
首先,会议使我意识到数学建模在实际问题解决中的核心作用。数学建模是将实际问题抽象为数学模型,并通过数学方法对模型进行求解和分析的过程。在会议中,我看到了许多案例研究,这些案例来自各个领域,包括物理学、经济学、环境科学等。通过数学建模,这些问题得以量化和形象化,进而可以应用各种数学算法进行分析和求解。例如,会议中有专家介绍了通过数学建模和优化算法来优化物流配送路径的案例。通过在数学模型中引入各项参数和约束条件,可以使得物流配送的效率得到最大化。这一案例使我深刻认识到数学建模在实际问题解决中的重要性,而数学建模会议则为我们提供了交流与学习的平台,让我们能够更好地发挥数学建模的作用。
其次,会议让我更加了解数学建模的具体流程和方法。数学建模过程中的几个关键步骤包括问题分析、模型建立、模型求解和结果验证。在会议中,不同领域的专家分享了他们解决实际问题时的数学建模流程和方法。通过他们的分享,我了解到了多种数学建模方法,比如微分方程建模、统计建模和优化建模等。这些方法在实际问题中有不同的应用场景,如流体力学中的微分方程建模,金融风险管理中的统计建模等。此外,会议还引导我们学习了一些常用的数学建模软件和工具,如MATLAB和Python等。通过这些工具的使用,我们可以更方便地进行数学模型的求解和分析。会议的这部分内容,让我对数学建模的方法和工具有了更全面的了解,也为我今后的数学建模实践提供了指导。
第三,会议也让我认识到数学建模需要与其他学科的交叉融合。在数学建模中,数学知识只是其中的一部分,还需要结合其他学科的知识和技巧来解决具体问题。在会议中,有专家分享了他们在数学建模中与其他学科合作的案例。例如,有一位生态学家与数学家合作,通过建立数学模型来研究生态系统的稳定性。他们将生态学中的生物种群动力学方程与数学方法相结合,成功地分析了生态系统中不同物种之间的相互作用和影响关系。这个案例让我认识到数学建模需要不同学科的交叉合作,通过多学科的知识和技巧,才能解决更复杂的实际问题。
最后,会议使我认识到数学建模需要不断学习和实践。数学建模是一个广阔而有深度的学科领域,它不断发展和演进。在会议中,许多专家都强调了数学建模的学习和实践的重要性。他们鼓励我们多读相关的书籍和论文,多参加数学建模竞赛和会议,提高我们的数学建模技能和素质。他们还分享了一些自己的数学建模实践经验,让我们受益匪浅。通过这次会议,我认识到数学建模需要多维度的学习和实践,只有不断提高自己的专业水平,才能更好地应用数学建模解决实际问题。
总之,数学建模会议给了我极大的启发。通过参与会议,我认识到了数学建模在实际问题解决中的核心作用,了解了数学建模的具体流程和方法,认识到数学建模需要与其他学科的交叉融合,并意识到数学建模需要不断学习和实践。这次会议为我今后的学习和实践提供了很好的指导,也让我更加热爱和坚定了从事数学建模的信心和决心。
参加数学建模心得体会【第三篇】
数学建模是一项极具挑战性和创造性的工作。为了交流和分享各类数学建模的研究成果,近日我参加了一场数学建模会议。在会议中,我不仅学到了很多新知识,也结识了许多有趣的人,并得到了一些宝贵的启示和心得体会。
首先,会议的主题是数学建模在现实生活中的应用。会议的演讲者来自各个领域,他们分享了自己的研究成果和应用案例。这些案例涉及到医学、环境保护、经济等领域,展示了数学建模在解决实际问题中的重要性和有效性。我被这些案例所吸引,也更加深入地理解了数学建模的意义和作用。
其次,会议还包括了一些小组讨论和研讨会。这些活动给与会者提供了一个交流和互动的平台。我参与了一个小组讨论,与其他与会者一起探讨了一个与交通流量优化相关的问题。通过与专家和同行的交流,我得到了很多有关该问题的新观点和启示。这个小组讨论对我的研究工作产生了积极的影响,并激发了我在这一领域的更深入研究。
在会议期间,我也结识了许多志同道合的人。他们来自不同的学校和研究机构,但都对数学建模充满热情。我们一起讨论问题、分享经验,并互相帮助解决困惑。通过这些交流,我不仅扩大了自己的人脉圈,也学到了很多新的想法和方法。这种交流和合作的氛围让我感受到学术界的温暖和友好。
除了共享知识和经验之外,会议还提供了一个机会,让我们了解领域内的前沿研究进展。有各类海报展示和口头报告,展示了最新的数学建模研究成果。我参观了一些海报展示,并听了一些口头报告。这些报告提供了一些非常有趣和创新的研究成果,激发了我进一步探索这些领域的兴趣。
最后,参加这场数学建模会议让我对自己的研究产生了一些新的认识。之前,我对数学建模局限于某个领域的认识,但在会议上我才发现数学建模的广度和深度。数学建模不仅是一门学科,也是一种方法和工具,可以帮助我们更好地理解世界和解决问题。这个认识让我对自己的研究充满了信心,并激励我继续深入学习和探索。
总之,参加这场数学建模会议是一次非常有益的经历。通过会议,我不仅学到了很多新知识,结识了有趣的人,还得到了一些宝贵的启示和心得体会。这次会议让我对数学建模有了更深入的理解,并激发了我在这一领域的更多研究动力。我希望将来能继续参加更多的数学建模会议,不断提升自己的研究能力和水平。
参加数学建模心得体会【第四篇】
数学建模是一门理论与实践相结合的学科,通过运用数学方法和计算机工具解决实际问题。在参与数学建模课程的学习过程中,我深刻体会到了它的重要性和应用价值。下面我将从兴趣培养、团队合作、问题解决、知识应用和思维拓展五个方面分享我的上课心得体会。
首先,数学建模课程培养了我的兴趣。以前,我对数学一直没有太大的兴趣,甚至觉得枯燥乏味。然而,在数学建模课堂上,我发现了数学的魅力。老师通过生动有趣的实例和案例,带我们领略了数学在实际问题中的精彩应用。这激发了我对数学的探究欲望,让我开始主动探索与学习数学的乐趣。
其次,数学建模课程强调了团队合作的重要性。在解决实际问题的过程中,往往需要多个人共同合作,各自发挥自己的优势,最终取得有效的解决方案。在数学建模课堂上,我们被分成小组,共同研究和讨论问题。通过与同学的合作,我学会了倾听他人的观点、欣赏他人的智慧,并且相互间不断地磨合和协作,达到了有机的整体效果。
第三,数学建模课程培养了我解决问题的能力。数学建模强调实际问题的建立数学模型并通过运用数学方法来解决。这需要我们深入分析问题的本质,理清思路,确定合适的模型和方法,进行有效的计算。在这个过程中,我学会了如何将复杂的实际问题化繁为简,运用数学知识和技巧,找到解决问题的有效途径。
第四,数学建模课程将知识与实际应用有机结合。在过去的学习中,我经常感到学到的知识与实际应用之间存在一定的脱节。而数学建模课程通过解决实际问题,将抽象的数学概念与实际情境相结合,使我能够更好地理解和应用所学的数学知识。这让我更加深入地认识到数学的重要性和实用价值。
最后,数学建模课程拓展了我的思维方式。传统的数学教育往往注重具体问题和计算方法的应用,容易陷入机械化的思维模式。而数学建模课程则要求我们以开放的思维方式来探究问题,不拘泥于固定的模式,注重创新和发展。在数学建模课堂上,我学会了灵活思考、提问和质疑,培养了独立思考和解决问题的能力。
总之,通过参与数学建模课程,我获得了很多宝贵的经验和收获。它不仅培养了我的兴趣,提升了我的团队合作和解决问题能力,还将数学知识与实际应用相结合,拓展了我的思维方式。数学建模不仅仅是一门课程,更是一种思维方式和方法论,对我将来的学习和工作有着重要的指导意义。我将继续努力学习和应用数学建模,不断提升自己的能力,为社会的发展和进步贡献自己的一份力量。
参加数学建模心得体会【第五篇】
利用数学建模的方法可以解决生活中的实际问题,那么我们先来了解一下怎样将数学建模引入小学的教学课堂上。解答数学题最基本的方式就是四个步骤:设、列、解、答,小学数学的应用题也是按照这几个步骤来作答的,所以学生对它已经不陌生,关键是数学建模的思想,让学生根据观察和逻辑思维以及数学知识的运用,找出题目中已知与未知之间的关联,还要让学生自己验证、测试所得到的答案是否正确,这种循环往复的求解过程可以帮助学生形成自己的知识体系,并在不断的学习过程中完善自身的知识结构。
想要学好数学建模思想,需要学习的内容特别多,因为数学建模里面包含的范围非常广,有公式、原理、定义、方程等一些数学知识,还包括具体问题中涉及的不同学科领域的知识,所以学生需要掌握的知识也特别多。在学习数学建模的过程中,往往会遇到很多没见过的知识,需要查阅资料等,所以教师要培养学生坚持不懈的精神、迎难而上的品质,不能遇到了没有见过的题或者不会的知识就有放弃学习数学建模的念头。老师要及时地跟学生及其家长沟通、交流,了解孩子的内心想法,不是一味地灌输理论知识,懂得跟学生谈心,讲道理,家长也要向老师汇报学生的学习状况和家庭作业的完成情况,如果基本的课内知识都消化不了,就先让学生完成好家庭作业,做到不拖延,养成良好的习惯。老师要根据家长的反馈情况进行改进培养学生的方法,做到贴合实际地教学。
将数学建模思想引入小学课堂教学是一件越来越被人们接受的事情,刚开始大家一定会觉得很新颖,所以教师一定要有主动性,全方面了解数学建模思想,让这个思维方式同自身的教学经验进行结合,将繁冗的理论知识用通俗易懂的语言表达出来,毕竟受众是小学生,他们的理解能力、接受能力还有待提高,如果一开始就传授深奥的知识,容易引起学生的逆反心理,对于学习感到有压力,造成不愿意学习的后果,所以教师要慢慢地让学生适应这种新方式的教学方法。
1、为学生提供一个比较详实的问题背景。由于小学生的生活经历有限,对一些实际问题的了解比较含糊,这不利于学生对实际问题的简化和抽象,所以条件许可的话可以组织学生参与一些相关的社会调查和实践活动,让学生亲身体验生活,亲自经历事情的发生和发展过程,让学生主动获取相关的信息和数学材料,从而培养学生对事物的观察和分辨能力,增强学生的数学意识。以上做法不但能为学生数学建模提供真实可信的感性材料,而且可以推动学生关心社会、了解社会、体验人生。
2、发挥学生的想象对实际问题进行简化。儿童有无限的创造力,虽然他们所掌握的数学知识是有限的,但他们的想象力是无限的,他们敢想敢做善于异想天开,这对简化实际问题,构建数学模型是十分有利的。我曾例举过两个数学老师和一个六年级学生同做一道数学应用题的例子,这道应用题是这样描述的:“某市举行篮球选拔赛,报名参赛的球队有20个,比赛采用淘汰制(没有平局),最终决出一名冠军参加省级篮球比赛,问一共要比赛几场?”教师在简化这个实际问题时先给每个参赛队分别编上号,再根据比赛的顺序把实际问题简化为如下形式:而学生在简化这个实际问题时,抓住“淘汰”这个词进行简化。学生是这样想的:因为是淘汰赛,所以无论是谁和谁比,每赛一场必定淘汰一个队。因此学生把这个实际问题简化为减法。我们先不说他们最终构建模型如何,从简化的角度讲,显然学生比教师的想法更简便、更明了。上例中由于教师受日常比赛模式的影响,对这个实际问题有了定势思维,所以他们在简化这个实际问题时,免不了受比赛顺序的影响,而学生对如何安排比赛顺序没有经验,所以不会受比赛顺序的干扰,他们就能抓住问题的本质“淘汰”进行想象和简化。
3、运用数学知识构建合理的数学模型,并解读数学模型。从以上例子中我们看到了两种不同的简化方式,接下来的工作就是对简化了的实际问题构建数学模型,一般来讲,如果数学模型中所用的数学工具愈简单,那么这样的数学模型愈有价值,先看教师的数学模型:20÷2=1010÷2=5(场)5÷2=2(场)……1(2+2)÷2=1(场)……1(1+1)÷2=1(场)解读模型:10+5+2+1+1=19(场)再看学生的数学模型:20-1。解读模型:20-1=19。从以上两种数学模型分析,教师的数学模型繁琐,采用的数学工具也比学生的复杂,相比之下显然学生的数学模型比教师的价值大。
数学建模与数学思维能力的发展是当前教学课堂的热门话题。数学建模法是一种极其重要的思想方法,是培养学生实际应用数学的能力与意识的重要途径。因此可以结合正常的教学内容,一方面渗透建模思想,另一方面根据教学内容的特点确定相应的思维训练侧重点,创设出集建模思想渗透与思维训练于一体的教学方案。达到深化知识理解和发展数学思维的能力,激发学习兴趣,强化应用意识的目的。下面通过用数学建模方法解实际问题来进一步阐述数学建模对促进数学思维的作用。
建模能力是一个解题者各种能力的综合运用,它涉及文字理解能力,对实际问题的熟练程度,最重要的是对相关数学知识的掌握程度。模型在表达问题的本质方面具有最突出的的作用,它将无序状态转化为明确的数学问题,然后构建数学模型,解决实际问题,增加学生对数学的学习兴趣,以及激发学生的创新能力。下面通过用数学建模方法解实际问题来进一步阐述数学建模在激发学生数学学习的自主性与创新性的作用。
3.以数学建模为手段培养学生的自我评价能力。
学生运用模型方法对实际问题作出解答后,往往还要回到实际当中去,判断所得的解答是否与实际问题相符合,如果不相符合的话就必须进行检查,看看究竟是数学推理有误,还是选择的数学模型不恰当。有时所建立的模型与原模型差距较大,这时就要建立全新的数学模型。比如著名的“哥尼斯堡七桥问题”是许多人始终未能解决的难题,大数学家欧拉不是道桥上去试走,而是巧妙的运用数学知识把小岛,河岸抽象成“点”,把桥抽象成“线”,成功的构建出几何模型,一笔画出问题,才使问题得以解决。许多数学模型的建立往往只有较好,没有最好,甚至一题多模,这就给评价带来了很大的困难。但是同时也是挑战。在这样一种条件下,可以更好的培养学生的自我评价能力。学生正是在这种不断修改和完善的过程中,来锻炼自己,充实自己,从而形成独立思考的习惯和良好的自我评价能力。
将本文的word文档下载到电脑,方便收藏和打印。
参加数学建模心得体会【第六篇】
在我参加数学建模竞赛的过程中,我深受启发和感动。通过这次经历,我对数学建模有了更深刻的理解,并积累了一些使用心得。以下是我对数学建模的使用心得的总结。
首先,我意识到了数学在现实问题中的重要性。数学建模是将数学方法与实际问题相结合,利用数学模型解决实际问题的过程。在这个过程中,数学扮演着重要的角色。通过数学建模,我们能够分析问题、理清思路、建立模型、进行推导和验证。数学作为一门科学,给予了我们解决问题的思维工具和方法,使得我们能够更加系统和有序地思考和解决问题。
其次,数学建模需要全面的知识储备和综合能力。在实际问题中,我们往往需要运用到多个学科的知识。比如,解决一个流量问题,我们需要运用到数学、物理、统计学等多个学科的知识。因此,我们需要在平时的学习中全面积累各个学科的知识,这样在解决实际问题时才能够游刃有余。除了知识储备外,数学建模还需要综合运用各种方法和技巧。例如,建立模型时,我们可以运用到微积分、代数、概率统计等多种数学方法。同时,通过数学模型的求解,我们还需要运用到计算机编程、数据分析等技术手段。因此,数学建模需要我们具备全面的知识储备和综合能力。
再者,数学建模需要团队协作和沟通能力。在竞赛中,我们组成了一个小组共同完成一个数学建模问题的解决。在这个过程中,大家需要相互协作,共同完成各自的任务。有些问题需要多个小组成员相互协作才能解决。此外,每一个小组成员的意见和建议也都是很重要的,在完成任务的过程中,我们要积极倾听和沟通。通过团队协作和沟通,我们能够更好地发挥各自的长处,共同完善和提高解决问题的方案和方法。
最后,数学建模是一个不断学习和提高的过程。通过数学建模竞赛,我对数学建模有了更深入的了解。但同时,我也发现自己的不足之处。比如,建立模型的能力还需要提高,对于一些复杂问题的求解还存在一定的困难。因此,我决定在之后的学习中加强这方面的训练和提高,提高自己的数学建模能力。此外,我还计划参加更多的数学建模竞赛,通过不断实践和参与,不断学习和提高。
总之,在数学建模竞赛中,我收获了很多。通过这次经历,我对数学建模有了更深刻的理解,并积累了一些使用心得。我意识到数学在现实问题中的重要性,了解到数学建模需要全面的知识储备和综合能力,认识到数学建模需要团队协作和沟通能力,同时,我也意识到数学建模是一个不断学习和提高的过程。我相信,在今后的学习和实践中,我会不断学习和提高自己的数学建模能力,为解决实际问题贡献自己的力量。
参加数学建模心得体会【第七篇】
一年一度的全国数学建模大赛在今年的9月21日上午8点拉开战幕,各队将在3天72小时内对一个现实中的实际问题进行模型建立,求解和分析,确定题目后,我们队三人分头行动,一人去图书馆查阅资料,一人在网上搜索相关信息,一人建立模型,通过三人的努力,在前两天中建立出两个模型并编程求解,经过艰苦的奋斗,终于在第三天完成了论文的写作,在这三天里我感触很深,现将心得体会写出,希望与大家交流。
1.团队精神:
团队精神是数学建模是否取得好成绩的最重要的因素,一队三个人要相互支持,相互鼓励。切勿自己只管自己的一部分(数学好的只管建模,计算机好的只管编程,写作好的只管论文写作),很多时候,一个人的思考是不全面的,只有大家一起讨论才有可能把问题搞清楚,因此无论做任何板块,三个人要一起齐心才行,只靠一个人的力量,要在三天之内写出1篇高水平的文章几乎是不可能的。
2.有影响力的leader:
在比赛中,leader是很重要的,他的作用就相当与计算机中的cpu,是全队的`核心,如果一个队的leader不得力,往往影响一个队的正常发挥,就拿选题来说,有人想做a题,有人想做b题,如果争论一天都未确定方案的话,可能就没有足够时间完成1篇论文了,又比如,当队中有人信心动摇时(特别是第三天,人可能已经心力交瘁了),leader应发挥其作用,让整个队伍重整信心,否则可能导致队伍的前功尽弃。
3.合理的时间安排:
做任何事情,合理的时间安排非常重要,建模也是一样,事先要做好一个规划,建模一共分十个板块(摘要,问题提出,模型假设,问题分析,模型假设,模型建立,模型求解,结果分析,模型的评价与推广,参考文献,附录)。你每天要做完哪几个板块事先要确定好,这样做才会使自己游刃有余,保证在规定时间内完成论文,以避免由于时间上的不妥,以致于最后无法完成论文。
4.正确的论文格式:
论文属于科学性的文章,它有严格的书写格式规范,因此1篇好的论文一定要有正确的格式,就拿摘要来说吧,它要包括6要素(问题,方法,模型,算法,结论,特色),它是1篇论文的概括,摘要的好坏将决定你的论文是否吸引评委的目光,但听阅卷老师说,这次有些论文的摘要里出现了大量的图表和程序,这都是不符合论文格式的,这种论文也不会取得好成绩,因此我们写论文时要端正态度,注意书写格式。
5.论文的写作:
我个人认为论文的写作是至关重要的,其实大家最后的模型和结果都差不多,为什么有些队可以送全国,有些队可以拿省奖,而有些队却什么都拿不到,这关键在于论文的写作上面。1篇好的论文首先读上去便使人感到逻辑清晰,有条例性,能打动评委;其次,论文在语言上的表述也很重要,要注意用词的准确性;另外,1篇好的论文应有闪光点,有自己的特色,有自己的想法和思考在里面,总之,论文写作的好坏将直接影响到成绩的优劣。
6.算法的设计:算法的设计的好坏将直接影响运算速度的快慢,建议大家多用数学软件(mathematice,matlab,maple,mathcad,lindo,lingo,sas等),这里提供十种数学建模常用算法,仅供参考:
1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)。
2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用matlab作为工具)。
3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用lindo、lingo软件实现)。
4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)。
5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)。
6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)。
7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)。
8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)。
9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)。
10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用matlab进行处理)。
以上便是我这次参加这次数学建模竞赛的一点心得体会,只当贻笑大方,不过就数学建模本身而言,它是魅力无穷的,它能够锻炼和考查一个人的综合素质,也希望广大同学能够积极参与到这项活动当中来。
参加数学建模心得体会【第八篇】
本文目录。
通过对专题七的学习,我知道了数学探究与数学建模在中学中学习的重要性,知道了什么是数学建模,数学建模就是把一个具体的实际问题转化为一个数学问题,然后用数学方法去解决它,之后我们再把它放回到实际当中去,用我们的模型解释现实生活中的种种现象和规律。
知道了数学建模的几点要求:一个是问题一定源于学生的日常生活和现实当中,了解和经历解决实际问题的过程,并且根据学生已有的经验发现要提出的问题。同时,希望同学们在这一过程中感受数学的实用价值和获得良好的情感体验。当然也希望同学们在这样的过程当中,学会通过实际上数学探究本身应该说在平时教学当中,老师有些在课堂上也是这样教学的,他更重要的意义就是引导老师增加一种教学方式,首先就是这个问题就是有点儿全新性,解决的方案不是很明了,这样学生要有一个尝试,一个探索的过程查询资料等手段来获取信息,之后采取各种合作的方式解决问题,养成与人交流的能力。
实际上数学探究本身应该说在平时教学当中,老师有些在课堂上也是这样教学的,他更重要的意义就是引导老师增加一种教学方式,首先就是这个问题就是有点儿全新性,解决的方案不是很明了,这样的话学生要有一个尝试,一个探索的过程。数学探究活动的关健词就是探究,探究是一个活动或者是一个过程,也是一种学习方式,我们比较强调是用这样的方式影响学生,让他主动的参与,在这个活动当中得到更多的知识。
探究的结果我们认为不一定是最重要的,当然我们希望探究出来一个结果,通过这种活动影响学生,改变他的学习方式,增加他的学习兴趣和能力。我们也关心,大家也可以看到在标准里面,有非常突出的数学建模的这些内容,但是它的要求、定位和为什么把这些领域加到我的标准当中,你应该怎么看待这部分内容。
返回目录。
刚参加工作那阵子就接触到“建模”这个概念,也曾对之有过关注和尝试,但终因功力不济,未能持之以恒给力研究,也就一阵烟云飘过了一下罢了。
许校的讲座再次激起了我们对这个曾经的相识思考的热情。
同样一个名词,但在新的时代背景下许校赋予了其更多新的内涵。
首先是对“建模”的理解差异。那时更多的是一种短视或者说应试背景下的行为,“建模”的理解就是给学生一个固定的模式的东西,通过教学行为让学生接受而成为其解决问题的一种工具;而许校的“建模”更多的是一种动态的或者说是一种有型而又不可僵化定型的东西,应该是可以助力学生发展最终可以成为学生数学素养的一部分。
其次,对于如何建模我们可以看到更多不同。过去更多的是一种对数学模型简单重复的强化行为,显得单调而生硬;而许校的“建模”则更多的强调不同层面上引导学生通过“悟”、“辨”、“用”等环节,让学生立体式全方位的理解模型、建立模型,从而避免了过去那种“死模”而将学生“模死”的现象。
许校的“模”,强调应该是一个利于学生可发展的模,可以进入到无意识和骨子里,成为学生真正的数学素养,最终能够跳出模,从而达到模而不模的去形式化境界。
数学建模是一个经历观察、思考、归类、抽象与总结的过程,也是一个信息捕捉、筛选、分享的“参加数学建模心得体会范文【热选8篇】”,更是一个思想与方法的产生与选择的过程。它给学生再现了一种“微型科研”的过程。数学建模教学有利于激发学生学习数学的兴趣,丰富学生数学探索的情感体验;有利于学生自觉检验、巩固所学的数学知识,促进知识的深化、发展;有利于学生体会和感悟数学思想方法。同时教师自身具备数学模型的构建意识与能力,才能指导和要求学生通过主动思维,自主构建有效的数学模型,从而使数学课堂彰显科学的魅力。
为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。1.只有经历这样的探索过程,数学的思想、方法才能沉积、凝聚,从而使知识具有更大的智慧价值。动手实践、自主探索与合作交流是学生学习数学的重要方式。学生的数学学习活动应当是一个主动、活泼的、生动和富有个性的过程。因此,在教学时我们要善于引导学生自主探索、合作交流,对学习过程、学习材料、学习发现主动归纳、提升,力求建构出人人都能理解的数学模型。
教师不应只是“讲演者”,而应不时扮演下列角色:参谋——提一些求解的建议,提供可参考的信息,但并不代替学生做出决断。询问者——故作不知,问原因、找漏洞,督促学生弄清楚、说明白,完成进度。仲裁者和鉴赏者——评判学生工作成果的价值、意义、优劣,鼓励学生有创造性的想法和作法。
数学已经成为当代高科技的一个重要组成部分和思想库,培养学生应用数学的意识和能力也已经成为数学教学的一个重要方面。而应用数学去解决各类实际问题就必须建立数学模型。小学数学教学的过程其实就是教师引导学生不断建模和用模的过程。因此,用建模思想指导小学数学教学显得愈发重要。
返回目录。
一年一度的全国数学建模大赛在今年的9月21日上午8点拉开战幕,各队将在3天72小时内对一个现实中的实际问题进行模型建立,求解和分析,确定题目后,我们队三人分头行动,一人去图书馆查阅资料,一人在网上搜索相关信息,一人建立模型,通过三人的努力,在前两天中建立出两个模型并编程求解,经过艰苦的奋斗,终于在第三天完成了论文的写作,在这三天里我感触很深,现将心得体会写出,希望与大家交流。
1.团队精神:
团队精神是数学建模是否取得好成绩的最重要的因素,一队三个人要相互支持,相互鼓励。切勿自己只管自己的一部分(数学好的只管建模,计算机好的只管编程,写作好的只管论文写作),很多时候,一个人的思考是不全面的,只有大家一起讨论才有可能把问题搞清楚,因此无论做任何板块,三个人要一起齐心才行,只靠一个人的力量,要在三天之内写出1篇高水平的文章几乎是不可能的。
2.有影响力的leader:
在比赛中,leader是很重要的,他的作用就相当与计算机中的cpu,是全队的核心,如果一个队的leader不得力,往往影响一个队的正常发挥,就拿选题来说,有人想做a题,有人想做b题,如果争论一天都未确定方案的话,可能就没有足够时间完成1篇论文了,又比如,当队中有人信心动摇时(特别是第三天,人可能已经心力交瘁了),leader应发挥其作用,让整个队伍重整信心,否则可能导致队伍的前功尽弃。
3.合理的时间安排:
做任何事情,合理的时间安排非常重要,建模也是一样,事先要做好一个规划,建模一共分十个板块(摘要,问题提出,模型假设,问题分析,模型假设,模型建立,模型求解,结果分析,模型的评价与推广,参考文献,附录)。你每天要做完哪几个板块事先要确定好,这样做才会使自己游刃有余,保证在规定时间内完成论文,以避免由于时间上的不妥,以致于最后无法完成论文。
4.正确的论文格式:
论文属于科学性的文章,它有严格的书写格式规范,因此1篇好的论文一定要有正确的格式,就拿摘要来说吧,它要包括6要素(问题,方法,模型,算法,结论,特色),它是1篇论文的概括,摘要的好坏将决定你的论文是否吸引评委的目光,但听阅卷老师说,这次有些论文的摘要里出现了大量的图表和程序,这都是不符合论文格式的,这种论文也不会取得好成绩,因此我们写论文时要端正态度,注意书写格式。
5.论文的写作:
我个人认为论文的写作是至关重要的,其实大家最后的模型和结果都差不多,为什么有些队可以送全国,有些队可以拿省奖,而有些队却什么都拿不到,这关键在于论文的写作上面。1篇好的论文首先读上去便使人感到逻辑清晰,有条例性,能打动评委;其次,论文在语言上的表述也很重要,要注意用词的准确性;另外,1篇好的论文应有闪光点,有自己的特色,有自己的想法和思考在里面,总之,论文写作的好坏将直接影响到成绩的优劣。
6.算法的设计:算法的设计的好坏将直接影响运算速度的快慢,建议大家多用数学软件(mathematice,matlab,maple,mathcad,lindo,lingo,sas等),这里提供十种数学建模常用算法,仅供参考:
1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)。
2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用matlab作为工具)。
3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用lindo、lingo软件实现)。
4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)。
5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)。
6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)。
7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)。
8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)。
9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)。
10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用matlab进行处理)。
以上便是我这次参加这次数学建模竞赛的一点心得体会,只当贻笑大方,不过就数学建模本身而言,它是魅力无穷的,它能够锻炼和考查一个人的综合素质,也希望广大同学能够积极参与到这项活动当中来。