实用高二数学教学计划(精彩5篇)

网友 分享 时间:

【请您参阅】下面供您参考的“实用高二数学教学计划(精彩5篇)”是由阿拉网友精心整理分享的,供您阅读参考之用,希望此例范文对您有所帮助,喜欢就复制下载支持一下小编了!

高二数学教学计划【第一篇】

一、本课教学内容的本质、地位、作用分析

(一)教材所处的地位和前后联系

本节课是人教版《高中数学》第三册(选修ⅱ)的第一章“概率与统计”中的“抽样方法”的第一课时:简单随机抽样.其主要内容是介绍简单随机抽样的概念以及如何实施简单随机抽样.数理统计学包括两类问题,一类是如何从总体中抽取样本,另一类是如何根据对样本的整理、计算和分析,对总体的情况作出一种推断.可见,抽样方法是数理统计学中的重要内容.简单随机抽样作为一种简单的抽样方法,又在其中处于一种非常重要的地位.因此它对于学习后面的其它较复杂的抽样方法奠定了基础,同时它强化对概率性质的理解,加深了对概率公式的运用.因此它起到了承上启下的作用,在教材中占有重要地位.

(二)教学重点

①简单随机抽样的概念,

②常用实施方法:抽签法和随机数表法

(三)教学难点

对简单随机抽样概念中“每次抽取时各个个体被抽到的概率相等”的理解.

二、教学目标分析

1、知识目标

(1)理解并掌握简单随机抽样的概念、特点和步骤.

(2)掌握简单随机抽样的两种方法:抽签法和随机数表法.

2、能力目标

(1)会用抽签法和随机数表法从总体中抽取样本,并能运用这两种方法和思想解决有关实际问题.

(2)灵活运用简单随机抽样的方法解释日常生活中的常见非数学 问题的现象,加强观察问题、分析问题和解决问题的能力培养.

3、情感、态度目标

(1)培养学生收集信息和处理信息、加工信息的实际能力,分析问题、解决问题的能力.

(2)培养学生热爱生活、学会生活的意识,强化他们学生活的知识、学生存的技能,提高学生的动手能力.

三、教学问题诊断

本节课是学生在义教阶段学习了数据的收集、抽样、总体、个体、样本等统计概念以后,进一步学习统计知识的.这是义教阶段统计知识的发展,因此教学过程不应是一种简单的重复,也不应停留在对普查与抽样优劣的比较和方法的选择,而应该发展到对抽样进一步思考上,主要应集中的以下四个问题上:(1)为什么要进行随机抽样;(2)什么是随机抽样(数理统计上的随机抽样概念);(3)简单随机抽样应满足什么样的条件;(4)如何进行简单随机抽样.教学的重点是使学生关注数据分享的“实用高二数学教学计划(精彩5篇)”,任何数据的收集都有一定的目的,数据的抽取是随机的.要更加理性地看待数据分享的“实用高二数学教学计划(精彩5篇)”,要从随机现象本身的规律性来看待数据分享的“实用高二数学教学计划(精彩5篇)”,教师不必进一步明确界定概念,可待后续的学习中进一步完善.

如何发现随机抽样的公平性,也就是“如何去观察,才能发现规律”。学生可以很顺利地得到几个事实,但是如何去观察,这是学生学习时遇到的第一个教学问题。也是本节课的教学难点之一。教学时,应通过实例,帮助学生总结出观察一定要有目标,并用具体问题让学生练习进行体会。

1、创设情境,揭示课题

用多媒体展示情景:新闻报道全国高校毕业生就业率问题。举例说明一些实际问题,提出统计的概念。并提出思考问题: 如何收集数据? 请同学们举例说明.,请学生自由发言,对学生的发言进行补充,辨析普查与抽样调查。提出抽样调查的必要性。从实际问题入手,提出抽样调查的科学性。教师对学生的发言进行补充,同时向学生介绍我们所要研究的简单随机抽样、系统抽样、分层抽样都是不放回抽样.今天我们就来学习简单随机抽样.(板书课题)

2、学法指导,研探新知

思考1:

从5件产品中任意抽取一件,则每一件产品被抽到的概率是多少?

一般地,从n个个体中任意抽取一个,则每个个体被抽到的概率是多少?

思考2:

从6件产品中随机不放回抽取一个容量为3的样本,在这个抽样中,每一件产品被抽到的概率是多少?

一般地,从n个个体中随机抽取n个个体作为样本,则每个个体被抽到的概率是多少?

规律总结:

一般的,如果用简单随机抽样,个体数为n的总体中抽取一个容量为n的样本,那么每个个体被抽到的概率都相等。 .

3 实际运用,巩固升华

简单随机抽样体现了抽样的客观性和公平性,如何实施简单随机抽样呢?

①抽签法

提出问题学校要进行庆典,每个班到主会场观看节目有6个名额,高二(24)班共有57人,怎样分这6个名额? 要求:每个学生获得名额的概率相等小组讨论设计操作步骤。

. 学生很容易联想到抽签法这时我又抛出一个问题:那如何实施抽签法?学生能根据生活中的经验来实施抽签法引导学生从解决这个问题的方法得出抽签法的一般步骤:

先将总体中的所有个体(共有n个)编号(号码可从1到n)并把号码写在形状、大小相同的号签上(号签可用小球、卡片、纸条等制作),然后将这些号签放在同一个箱子里,进行均匀搅拌,抽签时每次从中抽一个号签,连续抽取n次,就得到一个容量为n的样本.

②随机数表法

请你设计分配方案:

5·12特大地震后,都江堰某地区198户地震损毁户需要搬进安居房,规模创造了全国之最.近期首批20套安居房准备发放.要求:每户首批获得安居房的概率相同 ,从而提出随机数表法的概念

随机数表法:为了简化制签过程,我们借助计算机来取代人工制签,由计算机制作一个随机数表,我们只需要按照一定的规则,到随机数表中选取在编号范围内的数码就可以,这种抽样方法就是随机数表法。

步骤:

(1)将总体中的所有个体编号(每个号码位数一致)

(2)在随机数表中任取一个数作为开始。

(3)从选定的数开始按一定的方向(或规则)读下去,得到的号码若不在编号中,则跳过;若在编号中则取出;如果得到的号码前面已经取出,也跳过;如此继续下去,直到取满为止。

(4)根据选定的号码抽取样本。

4、动手操作,合作交流

学生亲自动手进行抽签,体会抽签的公平性。

5、承上启下,留下悬念

回到开篇提到的实际问题,引出抽样还有其他方法。

四、教法分析和学法指导

(一)教法分析

1、讨论法与自学法相结合

改变传统的把学生看作是接受知识的“容器”的现象.让学生参与到教学活动的全过程中来,体现学生参与的主体地位,使学生手、脑、口并用,主动地获取知识,允许学生争论,在讨论中加深学生对知识的理解与掌握.如在解决“整个抽样过程中每个个体被抽到的概率是相等的”时组织学生讨论,在讨论的过程中使学生对这一难点有一个清楚的认识;又如在学习随机数表法时组织学生自学,既提高了学生独立学习、主动获取知识的能力又能满足学生在自学的过程中获得的成就感从而培养了自信心.

2、指导法

结合一些具体事件,如对用抽签法解决问题等事件进行分析,从而使学生对简单随机抽样过程有一个清楚的认识,加深对简单随机抽样方法的`理解.

3、利用多媒体辅助教学

(二)学法指导

(1)通过丰富的例子引入数学知识,引导学生应用数学知识解决实际问题,教会学生从生活中发现数学,学习数学,如学生从生活的实例发现问题得出简单随机抽样方法就是从生活

中发现数学,用数学解决实际问题.

(2)教会学生独立思考、自主探索、动手实践、合作交流的学习数学的方式,体现在整个教学过程中,如“研探新知”、“实际运用”等.

五、预期效果

学生能够用简单随机抽样方法,解决部分实际问题。

高二数学教学计划【第二篇】

一、教材依据

本节课是湘教版数学(必修三)第二章《解析几何初步》第二节《直线的方程》第一部分《直线方程的点斜式》内容。

二、教材分析

直线方程的点斜式给出了根据已知一个点和斜率求直线方程的方法和途径。在求直线的方程中,直线方程的点斜式是基本的,直线方程的斜截式、两点式都是由点斜式推出的。从初中代数中的一次函数引入,自然过渡到本节课想要解决的问题——求直线方程问题。在引入,过程中要让学生弄清直线与方程的一一对应关系,理解研究直线可以从研究方程和方程的特征入手。

在推导直线方程的点斜式时,根据直线这一结论,先猜想确定一条直线的条件,再根据猜想得到的条件求出直线方程。

三、教学目标

知识与技能:(1)理解直线方程的点斜式、斜截式的形式特点和适用范围;

(2)能正确利用直线的点斜式、斜截式公式求直线方程。

(3)体会直线的斜截式方程与一次函数的关系。

过程与方法:在已知直角坐标系内确定一条直线的几何要素——直线上的一点和直线的倾斜角的基础上,通过师生探讨,得出直线的点斜式方程;学生通过对比理解“截距”与“距离”的区别。

情态与价值观:通过让学生体会直线的斜截式方程与一次函数的关系,进一步培养学生数形结合的思想,渗透数学中普遍存在相互联系、相互转化等观点,使学生能用联系的观点看问题。

四、教学重点

重点:直线的点斜式方程和斜截式方程。

五、教学难点

难点:直线的点斜式方程和斜截式方程的应用。

要点:运用数形结合的思想方法,帮助学生分析描述几何图形。

六、教学准备

1.教学方法的选择:启发、引导、讨论.

创设问题情境,采用启发诱导式的教学模式引导学生探索讨论,学生主动参与提出问题、探索问题和解决问题的过程,突出以学生为主体的探究性学习活动。

2.通过让学生观察、讨论、辨析、画图,亲身实践,调动多感官去体验数学建模的思想;学生要学会用“数形结合”的方法建立起代数问题与几何问题间的密切联系。为使学生积极参与课堂学习,我主要指导了以下的学习方法:

①.让学生自己发现问题,自己通过观察图像归纳总结,自己评析解题对错,从而提高学生的参与意识和数学表达能力。

②.分组讨论。

七、教学过程

问 题

师生活动

设计意图

1、在直线坐标系内确定一条直线,应知道哪些条件?

学生回顾,并回答。然后教师指出,直线的方程,就是直线上任意一点的坐标 满足的关系式。

使学生在已有知识和经验的基础上,探索新知。

2、直线 经过点 ,且斜率为 。设点 是直线 上的任意一点,请建立 与 之间的关系。

学生根据斜率公式,可以得到,当 时, ,即

(1)

教师对基础薄弱的学生给予关注、引导,使每个学生都能推导出这个方程。

培养学生自主探索的能力,并体会直线的方程,就是直线上任意一点的坐标 满足的关系式,从而掌握根据条件求直线方程的方法。

3、(1)过点 ,斜率是 的直线 上的点,其坐标都满足方程(1)吗?

学生验证,教师引导。

使学生了解方程为直线方程必须满两个条件。

(2)坐标满足方程(1)的点都在经过 ,斜率为 的直线 上吗?

学生验证,教师引导。然后教师指出方程(1)由直线上一定点及其斜率确定,所以叫做直线的点斜式方程,简称点斜式.

使学生了解方程为直线方程必须满两个条件。

4、直线的点斜式方程能否表示坐标平面上的所有直线呢?

学生分组互相讨论,然后说明理由。

使学生理解直线的点斜式方程的适用范围。

5、(1) 轴所在直线的方程是什么? 轴所在直线的方程是什么?

(2)经过点 且平行于 轴(即垂直于 轴)的直线方程是什么?

(3)经过点 且平行于 轴(即垂直于 轴)的直线方程是什么?

教师学生引导通过画图分析,求得问题的解决。

进一步使学生理解直线的点斜式方程的适用范围,掌握特殊直线方程的表示形式。

6、例2、例4的教学。

教师引导学生分析要用点斜式求直线方程应已知那些条件?题目那些条件已经直接给予,那些条件还有待已去求。在坐标平面内,要画一条直线可以怎样去画。

学会运用点斜式方程解决问题,清楚用点斜式公式求直线方程必须具备的两个条件:(1)一个定点;(2)有斜率。同时掌握已知直线方程画直线的方法。

7、例3的教学。

求经过点 ,斜率为 的直线 的方程。

学生独立求出直线 的方程:

(2)

在此基础上,教师给出截距的概念,引导学生分析方程(2)由哪两个条件确定,让学生理解斜截式方程概念的内涵。

引入斜截式方程,让学生懂得斜截式方程源于点斜式方程,是点斜式方程的一种特殊情形。

8、观察方程 ,它的形式具有什么特点?

学生讨论,教师及时给予评价。

深入理解和掌握斜截式方程的特点?

9、直线 在 轴上的截距是什么?

学生思考回答,教师评价。

使学生理解“截距”与“距离”两个概念的区别。

10、你如何从直线方程的角度认识一次函数 ?一次函数中 和 的几何意义是什么?你能说出一次函数 图象的特点吗?

学生思考、讨论,教师评价、归纳概括。

体会直线的斜截式方程与一次函数的关系.

11、课堂练习第65页练习第1,2,3题。

学生独立完成,教师检查反馈。

巩固本节课所学过的知识。

12、小结

教师引导学生概括:(1)本节课我们学过那些知识点;(2)直线方程的点斜式、斜截式的形式特点和适用范围是什么?(3)求一条直线的方程,要知道多少个条件?

使学生对本节课所学的知识有一个整体性的认识,了解知识的来龙去脉。

13、布置作业:第77页第5题

学生课后独立完成。

巩固深化

八、教学反思

直线方程的点斜式给出了根据已知一个点和斜率求直线方程的方法和途径。在求直线的方程中,直线方程的点斜式是基本的,直线方程的斜截式、两点式都是由点斜式推出的。

本节课的基本题形:

1、已知直线上一点及直线的倾斜角,求直线的方程并作图;

2、已知直线上两点,求直线的方程并作图。教学时应注意让学生明确直线的倾斜角与斜率的关系,掌握过两点的直线的斜率公式,训练学生求直线方程的书写格式及直线的规范作图。

高二数学教学计划【第三篇】

高二的数学是学习的难点,是所有科目中难度最大的,网友为大家推荐了高二年级数学教学计划,请大家仔细阅读,希望你喜欢。

具体目标如下。

1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。

2.提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。

3.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。

5.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

6.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。

1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。

2、注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。

3、加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。

4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。

5、自始至终贯彻教学四环节,针对不同的教材内容选择不同教法。

6、重视数学应用意识及应用能力的培养。

网友为大家提供的,大家仔细阅读了吗?最后祝同学们学习进步。

高二数学教学计划【第四篇】

以培养创新型人材为目标,以联合办学为契机,深入钻研教材,靠集体智慧处理教研、教改资源及多媒体信息,根据我校实际,合理运用现代教学手段、技术,提高课堂效率。

1.深入钻练教材,在借鉴她校课件基础上,结合所教学生实际,确定好每节课所教内容,及所采用的教学手段、方法。

2.本期还要帮助学生搞好《数学》必修内容的复习,一是为学生学业水平检测作准备,二是为高三复习打基础。

3.本期的专题选讲务求实效。

4.继续培养学生的学习兴趣,帮助学生解决好学习教学中的困难,提高学生的数学素养和综合能力。

5.本期重点培养和提升学生的抽象思维、概括、归纳、整理、类比、相互转化、数形结合等能力,提高学生解题能力。

一、认真落实,搞好集体备课。每周至少进行一次集体备课,每位老师都要提前一周进行单元式的备课,集体备课时,由一名老师作主要发言人,对下一周的教材内容作分析,然后大家研究讨论其中的重点、难点、教学方法等。在星期一的集合备课中,主要是对上周备课中的情况作补充。每次备课都要用一定的时间交流一下前一段的教学情况,进度、学生掌握情况等。

二、详细计划,保证练习质量。教学中用配备资料是《高中数学新新学案》,要求学生按教学进度完成相应的习题,老师要给予检查和必要的讲评,老师要提前向学生指出不做的题,以免影响学生的学习。每周以内容滚动式编一份练习试卷,星期五发给学生带回家完成,星期一交,老师要进行批改,存在的普遍性问题最好安排时间讲评。试题量控制为10道选择题(4旧6新)、4道填空题(1旧3新)、4道解答题。

三、抓好第二课堂,稳定数学优生,培养数学能力兴趣。本学期第二课堂与数学竞赛准备班继续分开进行辅导。平常意义上的第二课堂辅导学生,主要是以兴趣班的形式,以复习巩固课堂教学的同步内容为主,一般只选用常规题为例题和练习,难度低于高考接近高考,用专题讲授为主要形式开展辅导工作。

四、加强辅导工作。对已经出现数学学习困难的学生,教师的下班辅导十分重要,所以每位老师必须重视搞好辅导工作。教师教学中,要尽快掌握班上学生的数学学习情况,有针对性地进行辅导工作,既要注意照顾好班上优生层,更不能忽视班上的困难学生。

高二数学教学计划【第五篇】

(1)知识目标:

1.在平面直角坐标系中,探索并掌握圆的标准方程;

2.会由圆的方程写出圆的半径和圆心,能根据条件写出圆的方程.

(2)能力目标:

1.进一步培养学生用解析法研究几何问题的能力;

2.使学生加深对数形结合思想和待定系数法的理解;

3.增强学生用数学的意识.

(3)情感目标:培养学生主动探究知识、合作交流的意识,在体验数学美的过程中激发学生的学习兴趣.

(1)教学重点:圆的标准方程的求法及其应用.

(2)教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程以及选择恰

当的坐标系解决与圆有关的实际问题.

(一)创设情境(启迪思维)

问题一:已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为,高为3m的货车能不能驶入这个隧道?

[引导] 画图建系

[学生活动]:尝试写出曲线的方程(对求曲线的方程的步骤及圆的定义进行提示性复习)

解:以某一截面半圆的圆心为坐标原点,半圆的直径ab所在直线为x轴,建立直角坐标系,则半圆的方程为x2 y2=16(y≥0)

将x=代入,得 .

即在离隧道中心线处,隧道的高度低于货车的高度,因此货车不能驶入这个隧道。

(二)深入探究(获得新知)

问题二:1.根据问题一的探究能不能得到圆心在原点,半径为 的圆的方程?

答:x2 y2=r2

2.如果圆心在 ,半径为 时又如何呢?

[学生活动] 探究圆的方程。

[教师预设] 方法一:坐标法

如图,设m(x,y)是圆上任意一点,根据定义点m到圆心c的距离等于r,所以圆c就是集合p={m||mc|=r}

由两点间的距离公式,点m适合的条件可表示为 ①

把①式两边平方,得(x―a)2 (y―b)2=r2

方法二:图形变换法

方法三:向量平移法

(三)应用举例(巩固提高)

i.直接应用(内化新知)

问题三:1.写出下列各圆的方程(课本p77练习1)

(1)圆心在原点,半径为3;

(2)圆心在 ,半径为 ;

(3)经过点 ,圆心在点 .

2.根据圆的方程写出圆心和半径

(1) ; (2) .

ii.灵活应用(提升能力)

问题四:1.求以 为圆心,并且和直线 相切的圆的方程.

2.已知圆的方程为 ,求过圆上一点 的切线方程.

方法一:待定系数法(利用几何关系求斜率-垂直)

方法二:待定系数法(利用代数关系求斜率-联立方程)

方法三:轨迹法(利用勾股定理列关系式) [多媒体课件演示]

方法四:轨迹法(利用向量垂直列关系式)

3.你能归纳出具有一般性的结论吗?

已知圆的方程是 ,经过圆上一点 的切线的方程是: .

iii.实际应用(回归自然)

问题五:如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度ab=20m,拱高op=4m,在建造时每隔4m需用一个支柱支撑,求支柱 的长度(精确到).

(四)反馈训练(形成方法)

问题六:1.求以c(-1,-5)为圆心,并且和y轴相切的圆的方程.

2.已知点a(-4,-5),b(6,-1),求以ab为直径的圆的方程.

3.求圆x2 y2=13过点(-2,3)的切线方程.

4.已知圆的方程为 ,求过点 的切线方程.

(五)小结反思(拓展引申)

1.课堂小结:

(1)圆心为c(a,b),半径为r 的圆的标准方程为:

当圆心在原点时,圆的标准方程为:

(2) 求圆的方程的方法:①找出圆心和半径;②待定系数法

(3) 已知圆的方程是 ,经过圆上一点 的切线的方程是:

(4) 求解应用问题的一般方法

2.分层作业:(a)巩固型作业:课本p81-82:(习题)

(b)思维拓展型作业:

试推导过圆 上一点 的切线方程.

3.激发新疑:

问题七:1.把圆的标准方程展开后是什么形式?

2.方程: 的曲线是什么图形?

圆是学生比较熟悉的曲线,初中平面几何对圆的基本性质作了比较系统的研究,因此这节课的重点确定为用解析法研究圆的标准方程及其简单应用。.首先,在已有圆的定义和求曲线方程的一般步骤的基础上,用实际问题引导学生探究获得圆的标准方程,然后,利用圆的标准方程由浅入深的解决问题,并通过圆的方程在实际问题中的应用,增强学生用数学的意识。另外,为了培养学生的理性思维,我分别在引例和问题四中,设计了两次由特殊到一般的学习思路,培养学生的归纳概括能力。在问题的设计中,我用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生有意注意,能力与知识的形成相伴而行,这样的设计不但突出了重点,更使难点的突破水到渠成.

本节课的设计了五个环节,以问题为纽带,以探究活动为载体,使学生在问题的指引下、教师的指导下把探究活动层层展开、步步深入,充分体现以教师为主导,以学生为主体的指导思想。应用启发式的教学方法把学生学习知识的过程转变为学生观察问题、发现问题、分析问题、解决问题的过程,在解决问题的同时锻炼了思维.提高了能力。

48 2530681
");