实用四年级数学教案电子版 四年级数学教案【汇编4篇】
【导读预览】此篇优秀范文“实用四年级数学教案电子版 四年级数学教案【汇编4篇】”由阿拉题库网友为您整理分享,以供您参考学习之用,希望此篇资料对您有所帮助,喜欢就复制下载支持吧!
四年级数学教案电子版【第一篇】
1、通过操作和实验,让学生亲身经历测量与估计的过程,讨论得出一种即合理又方便的方法。
2、重视引导学生总结活动过程,让学生在合作交流中有能力针对具体的问题设计测量的方案。
3、提高学生解决实际问题的能力,让学生感受到测量与估计在现实生活中的应用,提高估算技能。
天平铁钉米粒黄豆铁丝纸张
1、教师出示实物:一堆钉子和一堆米粒
提问:你能看一眼知道这些钉子和米粒的数量吗?
1、先来估计钉子的数量:
在操作之前老师给大家提供了一个工具--天平
让学生独立思考:有什么方法利用天平这个工具知道这些钉子的数量。(提示:想一想钉子的质量和数量的关系)
小结:既方便又合理的方法--算出一个钉子的质量,再用总质量除以一个钉子的质量,就可以得出钉子的数量。
2、估计一亿粒米的质量。
要求小组合作讨论出估计的方法。
提示:有的时候为了提高准确性还需要采取多次实验的方法。
合作要求:
*先用天平称出一克米或者2克米。
*数出一克米或者2克米的数量。
*根据书上表格,填写实验记录。
*写出算式,得出结果。
1、用两种方法计算一粒黄豆的平均质量。
2、每个小组选择一道题进行估计或测量。
学生踊跃回答,大胆猜测。鼓励学生能说出猜测的理由。
学生很有兴趣,积极性比较高。
希望学生通过独立思考,得出估计钉子数量的方法。
在这个过程中会有学生建议用天平称一个钉子的质量,老师让学生通过实验,发现由于一个钉子的质量太轻,无法测出。因此很自然的改成称其中一小堆的质量,通过计算得出一个钉子的大概质量。
先让学生讨论方法,利用前面测量钉子数量的经验四人小组讨论测量估计米粒的方法。
师生一起总结出合理简便的方法,有条理的整理出来,按步骤开始进行测量与估计。
四年级数学教案电子版【第二篇】
这节课主要是以活动的形式,让学生在实践的过程中感受学习的乐趣,感悟学习知识。使学生在自己的认知的基础上进行学习。
1、根据学生年龄特点,提出学生感兴趣的问题,让学生通过动手摆一摆、折一折、画一画,使学生获得知识途径的多元化,让学生在学习过程中体验数学和学习数学。
2、在有意义的实践活动中强化概念。
让学生解决生活中如何确定车站的位置,就是针对本节课的重点、难点知识强化与理解,师生、生生之间互动交流,整个教学过程在活动中完成,通过有趣的实践活动,学生进一步理解了垂直线段距离最短的问题,同时激发了学生的学习热情。
教学采用通过实践“悟”的教学,让学生从实践的过程中自觉领悟互相垂直的概念。先让学生用两支铅笔摆,再画出自己摆的图形,从生活中抽象出互相垂直的图形。从上课看来,互相垂直的直观图形在学生的头脑中已经有了很清晰的印象,这是一种为学生提供的凭直觉感悟的过程。悟后让学生实践,把长方形、正方形和平形四边形的纸折出两条互相垂直的线。教师通过引导学生看书观察,学生得出用一张正方形的纸先沿边对折一次,然后沿折痕对折,也可沿对角线对折,就可以得到两条互相垂直的直线。在折的时候,出现了有的同学折得很复杂,出现了很多折痕,由学生自己展示哪些折痕是互相垂直的。学生悟出结论:要形成互相垂直的必备条件是:在同一平面内相交、交角成直角。总之,这节课采取选择贴近学生思维的素材,通过学生实践操作,让学生主动获取知识,发现知识。尽管要解决的问题具有挑战性,探究的过程也有一定的难度,但是由于将解决互相垂直的知识置于实践操作之中,学生已有的知识经验被“激活”,能够在磕磕碰碰的探索中主动完成认知的建构,把直角、相交等知识结合起来。
四年级数学教案电子版【第三篇】
1. 使学生知道素数与合数的意义,会判断一个数是素数还是合数,会将自然数按因数的个数进行分类。
2. 使学生在探究活动中,进一步培养观察、比较、分析和归纳能力,感受数学文化的魅力,培养勇于探索的精神。
谈话:同学们,今天先向大家介绍一个世界数学史上著名的猜想。
课件播放:哥德巴赫是200多年前德国的数学家,他提出了一个伟大的猜想任何一个大于4的偶数都可以表示成两个奇素数的和。另一个大数学家欧拉又补充指出:任何大于2的偶数都是两个素数之和。这一猜想被称为哥德巴赫猜想。虽然人们知道这一猜想是正确的,但一直没能从理论上加以证明。数学家们把这一猜想称为数学皇冠上的明珠。我国数学家王元、潘承洞、陈景润先后在哥德巴赫猜想的证明上取得了重大进展,特别是陈景润所取得的研究成果,轰动了国内外数学界,被公认为是最具有突破性和创造性的,是当代在哥德巴赫猜想的研究和证明方面最好的成果。
提问:看了上面的短片,你想到了什么?有什么问题想问吗?(学生可能提出什么样的数是素数等问题)
谈话:大家想知道什么样的数是素数吗?我们今天就一起来研究这一问题。(板书:素数)
谈话:我们来做个实验。请同学们拿出信封里的小正方形,小组分工合作,分别用2个、3个、4个、6个、7个、11个、12个小正方形拼长方形,看看拼出的结果怎样。
学生在小组内活动,教师巡视并指导。
引导:仔细观察拼出的结果,你发现了什么?
通过比较学生会发现:用2个、3个、7个或11个小正方形拼长方形,只有一种拼法;用4个、6个或12个小正方形拼长方形,可以有两种或两种以上的拼法。
提问:为什么用2个、3个、7个或11个小正方形拼长方形只有一种拼法,而用4个、6个或12个小正方形拼长方形可以有两种或两种以上的拼法呢?(2、3、7或11只有两个因数,而4、6或12都有三个或三个以上的因数)
谈话:请同学们先在自己的练习本上写出1~20,并找出每一个数的所有因数,然后根据每个数因数的个数,将它们进行分类。
学生活动,教师巡视。
反馈:根据每个数因数的个数,你把这些数分成了几类?是哪几类?(根据每个数因数的个数,可以把它们分成三类:一类是只有两个因数的;一类是有三个或三个以上因数的;1只有一个因数,分为一类)
提问:只有两个因数的数,它们的因数有什么特点?(两个因数分别是1和它本身)
提问:有三个或三个以上因数的数,它们的因数有什么特点?(除了1和它本身外,还有其他的因数)
再问:为什么把1单独分为一类?(1是一个很特殊的数,它只有1个因数)
谈话:同学们通过自己的活动把自然数分成了三类,并总结出了这三类数的不同特点,那么,它们分别叫什么数呢?打开课本第78页,把例题认真地读一读,填一填,并和同桌的同学说一说你知道了什么。
学生自学课本之后,师生共同揭示素数和合数的概念(补充板书:和合数),同时明确1既不是素数,也不是合数。
提问:在2~20各数中,哪些数是素数?哪些数是合数?
谈话:关于素数和合数,你还想研究哪些问题?还有哪些不懂的问题?
根据提出的问题,有选择地引导学生交流和探索,同时解答学生提出的问题。
出示题目:先找出21、23、29的所有因数,再写出这三个数分别是素数还是合数。
先让学生说一说怎样找出每一个数的所有因数,再判断这三个数是素数还是合数,并说明理由。
先让学生按要求划一划,再说一说哪些数是素数,哪些数是合数。练习后引导学生说一说怎样判断一个数是素数还是合数。
学生独立完成判断,并说明理由。
提问:通过今天的学习,你知道了哪些知识?有什么新的收获?
学生举例检验。
谈话:通过检验,我们发现哥德巴赫猜想是正确的,只是至今还没有人能从理论上完全证明它。我相信,在不久的将来,一定有人能解开哥德巴赫猜想之谜,让我们一起努力吧!
在典型的数学背景材料中激发探索新知的兴趣。数学是人类的一种文化。本节课的设计,教师独具匠心地把素数与合数的教学置于数学文化的背景之中,让学生感受数学文化的魅力,激发了学生对数学的兴趣。课的开始,为学生呈现了有关哥德巴赫猜想的数学背景材料,这是一个200多年来诸多数学家不能解决的问题,但中国的数学家在这方面取得了重大的突破,激发了学生的民族自豪感,数学的奇妙吸引了学生的眼球。而这一情境中素数的概念学生还不了解,解开素数的奥秘自然地成为学生的自觉需要。课的结尾,再一次提出哥德巴赫猜想的问题,让学生通过举例检验猜想的正确性,使课的首尾呈呼应之势。同时,通过简短的语言,引导学生树立探索数学奥秘的理想,体现了教师对促进学生持续发展的关注。
在有效的探索活动中逐步明确素数和合数的内涵。动手实践、自主探索与合作交流是学生学习的重要方式。本课中,教师寓素数与合数的概念于拼长方形的操作活动中,先让学生在操作中初步感受小正方形的个数与拼成长方形的种数之间的关系,将注意力集中到一个数的因数上来;接着,通过写出1~20的所有因数,并根据各个数因数的个数对这些数进行分类,引导学生逐步概括出素数和合数的共同点;最后,让学生自主阅读课本,明确素数和合数的内涵。学生在这一过程中,积累了丰富的数学活动经验,发展了自主探索的意识和数学思考能力,增强了学好数学的信心。
四年级数学教案电子版【第四篇】
1、让学生在解决生活问题中理解连减的简便计算方法,体验计算方法的多样化。
2、培养学生根据具体情况选择算法的意识与能力,发展思维的灵活性。
3、使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。
教学重点:理解连减时不同算法的算理。
教学准备:多媒体课件
一、创设情境,导入新课
师:同学们,寒假期间,你都去过哪些地方?
二、小组合作,探索新知
1、出示情境图。(多媒体演示)
《自助旅游》这本书共234页
李叔叔昨天看了66页,今天又看了34页。
问:还剩多少页没看。
师:这个问题同学们会解决吗?那就试试吧。
2、小组交流汇报。
师:你们是怎么想的?
第一种解法:234—66—34(从总页数中减去昨天看的,再减去今天看的。)
第二种解法:234—(66+34)(先算出昨天和今天一共看了多少页,再从总页数中减掉。)
第三种解法:234—34—66(先从总页数中减去今天看的,再减去昨天看的。)
师:同学们用不同的方法解决了这个问题,下面就请你从这三个算式中任选一个计算一下吧。
3、交流。
你是用哪种方法计算的?
4、小精灵(动画人物)总结。
通过解决问题可以看出,在计算连减时,有多种方法。可以从左往右按顺序计算;也可以把减数加起来,再从被减数里去掉;还可以先减去后面的减数,再减去前面的。我们可以根据算式中数据的特点选择合适的算法,进行连减的计算。(板书课题:简便运算)
5、现在我把234改成266,想一想,你认为怎样计算简便?
(学生思考回答)
三、巩固练习
1、比一比,谁的方法简便。
621—82—18560—178—22756—189—156
3、提出可以用连减计算解决的实际问题。
四、小精灵总结全课
同学们在运用不同方法解决问题的过程中,了解了连减计算的不同方法,并且都能把所学的数学知识巧妙的运用到生活中。希望你们平时多留心、多观察,发现和解决更多的数学问题,获得更多的数学知识。
下一篇:售后客服年度工作总结范文9篇汇聚