考研数学选择题的解题技巧大全【精彩8篇】
【参照】优秀的范文能大大的缩减您写作的时间,以下优秀范例“考研数学选择题的解题技巧大全【精彩8篇】”由阿拉漂亮的网友为您精心收集分享,供您参考写作之用,希望下面内容对您有所帮助,喜欢就复制下载吧!
考研数学选择题的解题技巧大全【第一篇】
“内紧外松”,集中注意,消除焦虑怯场。
集中注意力是考试成功的保证,一定的神经亢奋和紧张,能加速神经联系,有益于积极思维,要使注意力高度集中,思维异常积极,这叫内紧,但紧张程度过重,则会走向反面,形成怯场,产生焦虑,抑制思维,所以又要清醒愉快,放得开,这叫外松。
提高解选择题的速度、填空题的准确度。
12个选择题,若能把握得好,容易的一分钟一题,难题也不超过五分钟。由于选择题的特殊性,由此提出解选择题要求“快、准、巧”,忌讳“小题大做”。填空题也是只要结果、不要过程,因此要力求“完整、严密”。
通过一个既有的模型,数学结论,物理实验,物理现象,通过列举简化,或者给出相关信息,来达到可以用教材知识思考的程度,有时候干脆直接出成理想实验题目或者资料类题目,这类题目往往突出的是细节,因为元素众多。
解题过程中卡在某一过渡环节上是常见的,这时可以先承认中间结论,往后推,看能否得到结论。若题目有两问,第(1)问想不出来,可把第(1)问当作“已知”,先做第(2)问,跳一步解答。对一个问题正面思考发生思维受阻时,用逆向思维的方法去探求新的解题途径,往往能得到突破性的进展.顺向推有困难就逆推,直接证有困难就反证。
“以退求进”是一个重要的解题策略,对于一个较一般的问题,如果一时不能解决所提出的问题,那么可以从一般退到特殊,从抽象退到具体,从复杂退到简单,从整体退到部分,从参变量退到常量,从较强的结论退到较弱的结论。总之,退到一个能够解决的问题,通过对“特殊”的思考与解决,启发思维,达到对“一般”的解决。
认真审题。
审题要仔细,关键字眼不可疏忽。不要以为是“容易题”“陈题”就一眼带过,要注意“陈题”中可能有“新意”。也不要一眼看上去认为是“新题、难题”就畏难而放弃,要知道“难题”也可能只难在一点,“新题”只新在一处。
审题要认真仔细。
对于一道具体的习题,解题时最重要的环节是审题。审题的第一步是读题,这是获取信息量和思考的过程。读题要慢,一边读,一边想,应特别注意每一句话的内在涵义,并从中找出隐含条件。
熟悉习题中所涉及的内容。
解题、做练习只是学习过程中的一个环节,而不是学习的全部,你不能为解题而解题。解题时,我们的概念越清晰,对公式、定理和规则越熟悉,解题速度就越快。
正确的心态。
其实对于所有认真复习迎考的同学来说,都有能力与实力在压轴题上拿到一半左右的分数,要获取这一半左右的分数,不需要大量针对性训练,也不需要复杂艰深的思考,只需要你有正确的心态!信心很重要,勇气不可少。同学们记住:心理素质高者胜!
千万不要分心。
专心于现在做的题目,现在做的步骤。现在做哪道题目,脑子里就只有做好这道题目。现在做哪个步骤,脑子里就只有做好这个步骤,不去想这步之前对不对,这步之后怎么做,做好当下!
重视审题。
你的心态就是珍惜题目中给你的条件。数学题目中的条件都是不多也不少的,一道给出的题目,不会有用不到的条件,而另一方面,你要相信给出的条件一定是可以做到正确答案的。所以,解题时,一切都必须从题目条件出发,只有这样,一切才都有可能。
审题要慢,做题要快,下手要准。
题目本身就是破解这道题的信息源,所以审题一定要逐字逐句看清楚,只有细致地审题才能从题目本身获得尽可能多的信息。找到解题方法后,书写要简明扼要,快速规范,不拖泥带水,牢记高考评分标准是按步给分,关键步骤不能丢,但允许合理省略非关键步骤。答题时,尽量使用数学语言、符号,这比文字叙述要节省而严谨。
保质保量拿下中下等题目。
中下题目通常占全卷的80%以上,是试题的主要部分,是考生得分的主要来源。谁能保质保量地拿下这些题目,就已算是打了个胜仗,有了胜利在握的心理,对攻克高难题会更放得开。
要牢记分段得分的原则,规范答题。
会做的题目要特别注意表达的准确、考虑的周密、书写的规范、语言的科学,防止被“分段扣点分”。
以上就是高考数学解题技巧,高中数学做题技巧的相关建议,希望能帮助到您!
考研数学选择题的解题技巧大全【第二篇】
对于数学解题思维过程,波利亚提出了四个阶段(见附录),即弄清问题、拟定计划、实现计划和回顾。这四个阶段思维过程的实质,可以用下列八个字加以概括:理解、转换、实施。
第一阶段:理解问题是解题思维活动的开始。
第二阶段:转换问题是解题思维活动的核心,是探索解题方向和途径的积极的尝试发现过程,是思维策略的选择和调整过程。
第三阶段:计划实施是解决问题过程的实现,它包含着一系列基础知识和基本技能的灵活运用和思维过程的具体表达,是解题思维活动的重要组成部分。
第四阶段:反思问题往往容易为人们所忽视,它是发展数学思维的一个重要方面,是一个思维活动过程的结束包含另一个新的思维活动过程的开始。
为了使回想、联想、猜想的方向更明确,思路更加活泼,进一步提高探索的成效,我们必须掌握一些解题的策略。
一切解题的策略的基本出发点在于“变换”,即把面临的问题转化为一道或几道易于解答的新题,以通过对新题的考察,发现原题的解题思路,最终达到解决原题的目的。
基于这样的认识,常用的解题策略有:熟悉化、简单化、直观化、特殊化、一般化、整体化、间接化等。
所谓熟悉化策略,就是当我们面临的`是一道以前没有接触过的陌生题目时,要设法把它化为曾经解过的或比较熟悉的题目,以便充分利用已有的知识、或解题模式,顺利地解出原题。
一般说来,对于题目的熟悉程度,取决于对题目自身结构的认识和理解。从结构上来分析,任何一道解答题,都包含条件和结论(或问题)两个方面。因此,要把陌生题转化为熟悉题,可以在变换题目的条件、结论(或问题)以及它们的联系方式上多下功夫。
常用的途径有:
(一)、充分联想回忆基本知识和题型:
按照波利亚的观点,在解决问题之前,我们应充分联想和回忆与原有问题相同或相似的知识点和题型,充分利用相似问题中的方式、方法和结论,从而解决现有的问题。
(二)、全方位、多角度分析题意:
对于同一道数学题,常常可以不同的侧面、不同的角度去认识。因此,根据自己的知识和经验,适时调整分析问题的视角,有助于更好地把握题意,找到自己熟悉的解题方向。
(三)恰当构造辅助元素:
数学中,同一素材的题目,常常可以有不同的表现形式;条件与结论(或问题)之间,也存在着多种联系方式。因此,恰当构造辅助元素,有助于改变题目的形式,沟通条件与结论(或条件与问题)的内在联系,把陌生题转化为熟悉题。
数学解题中,构造的辅助元素是多种多样的,常见的有构造图形(点、线、面、体),构造算法,构造多项式,构造方程(组),构造坐标系,构造数列,构造行列式,构造等价性命题,构造反例,构造数学模型等等。
所谓简单化策略,就是当我们面临的是一道结构复杂、难以入手的题目时,要设法把转化为一道或几道比较简单、易于解答的新题,以便通过对新题的考察,启迪解题思路,以简驭繁,解出原题。
简单化是熟悉化的补充和发挥。一般说来,我们对于简单问题往往比较熟悉或容易熟悉。
因此,在实际解题时,这两种策略常常是结合在一起进行的,只是着眼点有所不同而已。
解题中,实施简单化策略的途径是多方面的,常用的有:寻求中间环节,分类考察讨论,简化已知条件,恰当分解结论等。
1、寻求中间环节,挖掘隐含条件:
在些结构复杂的综合题,就其生成背景而论,大多是由若干比较简单的基本题,经过适当组合抽去中间环节而构成的。
因此,从题目的因果关系入手,寻求可能的中间环节和隐含条件,把原题分解成一组相互联系的系列题,是实现复杂问题简单化的一条重要途径。
2、分类考察讨论:
在些数学题,解题的复杂性,主要在于它的条件、结论(或问题)包含多种不易识别的可能情形。对于这类问题,选择恰当的分类标准,把原题分解成一组并列的简单题,有助于实现复杂问题简单化。
3、简单化已知条件:
有些数学题,条件比较、复杂,不太容易入手。这时,不妨简化题中某些已知条件,甚至暂时撇开不顾,先考虑一个简化问题。这样简单化了的问题,对于解答原题,常常能起到穿针引线的作用。
4、恰当分解结论:
有些问题,解题的主要困难,来自结论的抽象概括,难以直接和条件联系起来,这时,不妨猜想一下,能否把结论分解为几个比较简单的部分,以便各个击破,解出原题。
所谓直观化策略,就是当我们面临的是一道内容抽象,不易捉摸的题目时,要设法把它转化为形象鲜明、直观具体的问题,以便凭借事物的形象把握题中所及的各对象之间的联系,找到原题的解题思路。
(一)、图表直观:
有些数学题,内容抽象,关系复杂,给理解题意增添了困难,常常会由于题目的抽象性和复杂性,使正常的思维难以进行到底。
对于这类题目,借助图表直观,利用示意图或表格分析题意,有助于抽象内容形象化,复杂关系条理化,使思维有相对具体的依托,便于深入思考,发现解题线索。
(二)、图形直观:
有些涉及数量关系的题目,用代数方法求解,道路崎岖曲折,计算量偏大。这时,不妨借助图形直观,给题中有关数量以恰当的几何分析,拓宽解题思路,找出简捷、合理的解题途径。
(三)、图象直观:
不少涉及数量关系的题目,与的图象密切相关,灵活运用图象的直观性,常常能以简驭繁,获取简便,巧妙的解法。
所谓特殊化策略,就是当我们面临的是一道难以入手的一般性题目时,要注意从一般退到特殊,先考察包含在一般情形里的某些比较简单的特殊问题,以便从特殊问题的研究中,拓宽解题思路,发现解答原题的方向或途径。
所谓一般化策略,就是当我们面临的是一个计算比较复杂或内在联系不甚明显的特殊问题时,要设法把特殊问题一般化,找出一个能够揭示事物本质属性的一般情形的方法、技巧或结果,顺利解出原题。
所谓整体化策略,就是当我们面临的是一道按常规思路进行局部处理难以奏效或计算冗繁的题目时,要适时调整视角,把问题作为一个有机整体,从整体入手,对整体结构进行全面、深刻的分析和改造,以便从整体特性的研究中,找到解决问题的途径和。
所谓间接化策略,就是当我们面临的是一道从正面入手复杂繁难,或在特定场合甚至找不到解题依据的题目时,要随时改变思维方向,从结论(或问题)的反面进行思考,以便化难为易解出原题。
考研数学选择题的解题技巧大全【第三篇】
(1)要注意审题,我们在考试的时候一定要把题目多读几遍,弄清楚我们需要做的是什么,题目和选项之间有什么关系,弄清楚题目再动手去解答。
(2)答题时的顺序不一定要按照题号来进行。我们在做数学选择题的时候可以先从自己熟悉的题目开始,然后在去做自己不熟悉的题,因为这样做可以使我们更快的进入考试的状态,处理难题的时候才会有更强的自信。
(3)高考数学的选择题有大约七成的题都是按照直接法来解题的,所以我们要注意对富豪、概念、公式、定理等方面的理解和使用。例如函数和数列等题型就是考试常见的题目。
(4)要方法多样,高考数学是考察能力的考试,做题的时候要注意方法,要善于使用各种解题技巧,比如排除、验证、转化、估算等技巧。一旦有了思路就要尽快作答,不要在一些小提上过多的浪费时间,如果实在没有思路,我们也要坚定信心,就算是蒙题,也有四分之一的几率蒙对。
(5)在做数学选择题的时候,一定要控制好时间,最多不要超过四十分钟,为后面答题留下时间,以免时间浪费过多导致答不完卷。
考研数学选择题的解题技巧大全【第四篇】
全国硕士研究生入学统一考试数学试卷题型及分值分布:选择题8个,每个4分,共32分;填空题6个,每个4分,共24分;解答题9个,共94分。满分150分。
对于四选一的选择题,其中三个都是干扰项,一个是正确选项,答案只给出正确选项前面的字母,不给出推导过程,选对得满分,选错得0分,不倒扣分。选择题有多种解题方法,常用的方法有:首肯法、排除法、反例法、图示法、逆推法等。如果各种方法都不奏效,鼓励考生猜测选项。选择题属客观题,答案是唯一正确的,数学考试中的多选题也都以单选的形式出现,最终答案只有一个,评分是不偏不倚的。对于考生来说,会做的题目靠扎实的知识得分,不会做的只能靠自身的运气。选择题的难度一般适中,没有特别难的题目,也没有一眼就能看出答案的题目。选择题主要考查考生对数学概念、数学性质的理解,要求考生能进行简单的推理、判定、计算和比较。这一部分的32分需要考生在读书的时候深入思考,并要不完全依赖臆想,而要思考与动手相结合才能稳拿。
填空题的答案是确定和唯一的,只填出最终结果,不需给出推导计算过程,答对得满分,答错得0分。这部分题目一般需要进行有一定技巧的计算,但不会有太复杂的计算题。题目难度与选择题不相上下,即难度适中。方法只有一个:认真审题,高效率计算。填空题总共只有6个,高等数学(4个)、线性代数(1个)、概率论与数理统计(1个)各有分布,主要考查的是数学基本概念、基本原理、基本方法及数学的重要性质。这一部分24分的获取需要基础复习阶段就融会贯通的知识作保障。
解答题占总分的百分之六十多,其中有计算题、证明题及其他解答题,一般都会有多种解题方法和证明思路,有些甚至有初等解法,但考试解答时尽量用与《考试大纲》规定的考试内容和考试目标相一致的解法和证明方法,步骤表述清楚,避免因表达不清而失分。每题的分值与完成该题所花费的时间以及考核目标的有关,综合性较强的试题,推理过程较多的试题和应用性的试题分值较高。基本计算题、常规性试题和简单应用题的分值较低。解答题属主观题,其答案有时并不唯一,这就要求考生不仅要能处理一个题目,更要能看到出题人的考核意图,选择合适的.方法解答。
计算题的正确解答要靠平时对各种计算方法,以及对综合题如何选择有效的解题方法的熟练掌握。如二元函数求最值的方法和步骤,曲线积分、曲面积分的计算方法及其与重积分的关系,以及格林公式、高斯公式等,重积分的计算方法及一些特殊结论(如积分区域对称,被积对象具有一定的奇偶性时的情形)等都需要非常熟悉。证明题是大多数考生感到无从下手的题目,所以一些简单的证明题在考试中也会得分率极低。证明题考查最多的是中值定理(微分中值定理及积分中值定理),其次从题型来说就是不等式的证明,方法却比较庞杂,但仍然是有章可寻的。考生如果在平时就没有留太多的精力在证明题上,那么在考前的这两个月可以给出一点时间琢磨一下推理的问题,只要腾出一点脑力思考一下,这个东西并不难。解答题除考查基本运算外,还考查考生的逻辑推理能力和综合运用能力,需要考生在强化阶段加强提高这方面的能力。
中国大学网考研频道。
考研数学选择题的解题技巧大全【第五篇】
直接从数学题设条件出发,运用有关概念、性质、定理、法则等知识,通过推理运算,得出结论,再对照选择项,从中选正确答案的方法叫直接法。
2.特例法。
用特殊值(特殊图形、特殊位置)代替数学题设普遍条件,得出特殊结论,对各个选项进行检验,从而作出正确判断的方法叫特例法。常用的特例有特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等。
3.筛选法。
从数学题设条件出发,运用定理、性质、公式推演,根据“四选一”的指令,逐步剔除干扰项,从而得出正确判断的方法叫筛选法或剔除法。
4.代入法。
将各个数学选择项逐一代入题设进行检验,从而获得正确判断的方法叫代入法,又称为验证法,即将各选择支分别作为条件,去验证命题,能使命题成立的选择支就是应选的答案。
5.图解法。
据数学题设条件作出所研究问题的曲线或有关图形,借助几何图形的直观性作出正确判断的方法叫图解法或数形结合法。
考研数学选择题的解题技巧大全【第六篇】
选择题从难度上讲是比其他类型题目降低了,但知识覆盖面广,要求解题熟练、准确、灵活、快速。选择题的解题思想,渊源于选择题与常规题的联系和区别。它在一定程度上还保留着常规题的某些痕迹。
而另一方面,选择题在结构上具有自己的特点,即至少有一个答案(若一元选择题则只有一个答案)是正确的或合适的。因此可充分利用题目提供的信息,排除迷惑支的干扰,正确、合理、迅速地从选择支中选出正确支。
选择题中的错误支具有两重性,既有干扰的一面,也有可利用的一面,只有通过认真的观察、分析和思考才能揭露其潜在的暗示作用,从而从反面提供信息,迅速作出判断。
无论是什么科目的选择题,都有它固有的漏洞和具体的解决办法,把它总结为:6大漏洞、8大法则。
“6大漏洞”是指:有且只有一个正确答案;不问过程只问结果;题目有暗示;答案有暗示;错误答案有严格标准;正确答案有严格标准。
“8大原则”是指:选项唯一原则;范围最大原则;定量转定性原则;选项对比原则;题目暗示原则;选择项暗示原则;客观接受原则;语言的精确度原则。
下面是一些实例:
对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。
将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。
利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。
由题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。
通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。
利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。
将选择支代入题干进行验证,从而否定错误选择支而得出正确选择支的方法。
从题的正面解决比较难时,可从选择支出发逐步逆推找出符合条件的结论,或从反面出发得出结论。
对题设和选择支的特点进行分析,发现规律,归纳得出正确判断的方法。
有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的方法。
考研数学选择题的解题技巧大全【第七篇】
首先,要认真审题。做题时忌讳的就是不认真读题,埋头苦算,结果不但浪费了大量的时间,甚至有时候还选错,结果事倍功半。所以一定要读透题,由题迅速联想到涉及到的概念,公式,定理以及知识点中要注意的问题。发掘题目中的隐含条件,要去伪存真,领会题目的真正含义。
其次,要注意解题方法。做题时除了按照解答题的思路直接来求以外,还要注意一些特殊的方法,比如说特殊值法,代入法,排除法,验证法,数形结合法等等。
直接法。
有些选择题本身就是由一些填空题,判断题,解答题改编而来的,因此往往可采用直接法,直接由概念、公式、定理及性质出发,按照做解答题的方法一步步来求。我们在做解答题时大部分都是采用这种方法。
排除法。
选择题因其答案是四选一,必然只有一个正确答案,那么我们就可以采用排除法,从四个选项中排除掉易于判断是错误的答案,那么留下的一个自然就是正确的答案。
验证法。
通过对选择支的观察,分析,将各选择支逐个代入题干中,进行验证、或适当选取特殊值进行检验、或采取其他验证手段,以判断选择支正误的方法。
特殊值法。
有些选择题用常规方法求解比较困难,若根据答案中所提供的信息,选择某些特殊情况进行分析,或选择某些特殊值进行计算,或将字母参数换成具体数值代入,把一般形式变为特殊形式,再进行判断往往十分简单。
数形结合法。
也叫图象法,有些选择题用代数方法解计算较繁,但若能根据题意,做出草图,然后根据图形的形状、位置、性质、综合特征等,由图形的直观性得出选择题的答案。
选择题的解题方法还有很多,但做题时也不要拘泥于固定思维,有时候一道题可采用多种特殊方法综合运用。
还有,在做选择题的过程中,遇到关键性的词语可用笔做个记号,以引起自己的注意,比如说至少,没有一个,至多一个等等。第一遍没做的题也要做个记号,但要注意与其它记号区分开来,这样不容易遗漏。
最后,做完题后要仔细检查,有没有遗漏的,有没有涂错的,全面认真的再做一遍,可用不同的方法做一下,验证答案。另外遇到真不会做的,也不要空着不做,一定要选个答案。
一、直接法。
这是解填空题的基本方法,它是直接从题设条件出发、利用定义、定理、性质、公式等知识,通过变形、推理、运算等过程,直接得到结果。它是解填空题的最基本、最常用的方法。使用直接法解填空题,要善于通过现象看本质,熟练应用解方程和解不等式的方法,自觉地、有意识地采取灵活、简捷的解法。
二、特殊化法。
当填空题的结论唯一或题设条件中提供的信息暗示答案是一个定值时,而已知条件中含有某些不确定的量,可以将题中变化的不定量选取一些符合条件的恰当特殊值(或特殊函数,或特殊角,图形特殊位置,特殊点,特殊方程,特殊模型等)进行处理,从而得出探求的结论。这样可大大地简化推理、论证的过程。
三、数形结合法。
“数缺形时少直观,形缺数时难入微。”数学中大量数的问题后面都隐含着形的信息,图形的特征上也体现着数的关系。我们要将抽象、复杂的数量关系,通过形的形象、直观揭示出来,以达到“形帮数”的目的;同时我们又要运用数的规律、数值的计算,来寻找处理形的方法,来达到“数促形”的目的。对于一些含有几何背景的填空题,若能数中思形,以形助数,则往往可以简捷地解决问题,得出正确的结果。
四、等价转化法。
通过“化复杂为简单、化陌生为熟悉”,将问题等价地转化成便于解决的问题,从而得出正确的结果。
1、要因题制宜。在做选择填空题时,由于只需要选选项、写结果,不要求有计算过程,所以,我们应该采取最直接、最简单的方法来解题,而不是按部就班的来写解题过程。比如:选择题中最经常用到的排除法,很多时候不需要计算,一眼过去就知道哪个选项不正确,第一时间予以排除,这样就能为接下来的题目争取到更多的时间。
而在做后面简答题时,就不能忽略计算过程,通常情况下后面的大题都是按照步骤给分的,即使最后结果错了,但是解题思路、过程正确,也能得到一部分分数。
2、要放平心态。很多考生不是因为被题考倒了,而是被吓倒了。一看到题有些难度心里就发慌,导致发挥失常。其实,高考作为选拔考试,极少出现偏题、怪题,一旦觉得有难度,可多尝试几种方法来解题,或者是换一种思路,要始终坚信考题内容就是自己学过的知识,只要找准思路、找对方法就一定能解开。
3、要跳跃答题。方法君在此建议,高考数学并不一定非要按照从前至后的顺序答题,按照往年的考试规律,无论是选择题、填空题还是简答题,难度都是逐步递增的,所以,每种题型的前几题一定是比较简单的,如果我们先将基础题做完,就能拿到接近70%的分数,然后,再做中等难度和难度题,这样不仅时间上有优势,也能建立一定的心理优势,有利于考试的发挥。
4、要学会舍得。数学考试中,如果自觉基础不是很好,或者是时间不允许,那么就放弃最后一道大题。与其匆匆忙忙、慌慌张张做题,不如舍弃一些不容易得分的题,将注意力集中到可以得分的题上。如果时间允许,再考虑最后一道题;如果时间如允许,就把已知条件抄一遍,这样也有可能拿到一些分数。
考研数学选择题的解题技巧大全【第八篇】
技巧说明:
分析法就是对有关概念进行全面、正确、深刻的理解或对有关信息提取、分析和加工后而作出判断和选择的方法。
(1)特征分析法——根据题目所提供的信息,如数值特征、结构特征、位置特征等,进行快速推理,迅速作出判断的方法,称为特征分析法。
(2)逻辑分析法——通过对四个选择支之间的逻辑关系的分析,达到否定谬误支,选出正确支的方法,称为逻辑分析法。
下一篇:科学教研组活动记录【热选8篇】