二次函数教案人教版汇聚(精选4篇)

网友 分享 时间:

【导读预览】此篇优秀范文“二次函数教案人教版汇聚(精选4篇)”由阿拉题库网友为您整理分享,以供您参考学习之用,希望此篇资料对您有所帮助,喜欢就复制下载支持吧!

二次函数教案人教版【第一篇】

教师的任务不仅在于教数学,更主要的是创设情境,激励学生凭借自己的能力去获取数学知识,理解数学的道理,构建数学思想。因此,在教学中,我们应鼓励学生通过独立思考或合作学习研究,“发现”或“再创造”出数学知识。

一、教学背景分析:

1、教材分析:二次函数的知识是看中学数学学习的重要内容之一,它是从生活实际问题中抽象出的数学知识,又是在解决实际问题时广泛应用的数学工具,无论是在生活中还是在运用二次函数知识的方法上,都具有重要意义的教学内容。因此,搞好二次函数的图像和性质的教学,对学生能力的培养有重要的奠基意义。

2、教学内容分析:本节课二次函数的图像的第一课时,主要是研究最简单的二次函数的图像的画法,从而总结出它的性质。这既是对学生进行理性思维的培养,又是进行抽象思维的培养,具有较高的数学教育价值。因此学好本节内容对以后的学习也很重要。我确定本节课的重点是:根据图像观察、分析出二次函数的性质。

3、学生情况分析:本节课的教学对象是职高一年级级学生,在此之前他们对一次函数的图像和性质有一定的基础,但他们的观察能力,概括能力还比较弱,因此我确定本节课的难点是继续渗透数形结合的数学思想方法。

二、教学目标的确定:

我根据数学课程标准中关于“二次函数的图像”的教学要求,结合学生的实际情况,从以下三个方面确定了本节课的教学目标:

知识与技能:

(1)会用描点法画出二次函数y=ax2的图像。

(2)根据图像观察、分析出二次函数的性质。

(3)进一步理解二次函数和抛物线的有关知识。

过程与方法:通过画函数图像,总结性质,渗透由特殊到一般的辨证唯物主义观点。渗透数形结合的数学思想方法,培养观察能力和分析问题的能力。

情感态度:培养学生勇于探索创新及实事求是的科学精神。

三、教学方法与手段:

教学方法主要采用问题导学、小组讨论与反馈练习相结合的方法,通过教

师设置问题,引导学生独立思考,通过总结二次函数的性质组织学生小组讨论,为较差学生提供得到帮助的机会,通过反馈练习了解学生情况,及时分析和矫正,提高课堂教学效果。

教学手段采用分层教学与学案相结合的方法。通过分层提问,使不同的学生获得不同的收获,通过学案的设计帮助学生检测学习情况,反思学习过程,不断提高学习效果。

四、教学过程的反思:

优点:

1、上课一开始,我就注重对所学过的平面直角坐标系的有关知识、平面内如何确定点的坐标、以及各象限内点的坐标特征和关于y轴对称点的坐标特征的复习。使学生在画二次函数图像时描点找得很快、很准确。在讲解抛物线的概念时,出示了同学们很感兴趣的姚明投篮的照片,激发了学生的学习兴趣。为了得出a不同对抛物线图像和性质的影响,在学生画完三个图像后,教师采用“问题导学”式教学方法,设置问题情境,引导学生自主进行观察、发现、归纳、反思等数学活动,得出二次函数y=ax2的图像和性质,在教学中,由学生自己动手,通过列表、描点、连线绘制出二次函数的图像,培养了学生动手动脑的习惯和综合分析归纳的能力。

2、小组合作学习,发现其中的规律。鼓励学生相互交流自己的想法,并说明理由。如在画出图像后,提问学生“我们可以从图中观察到什么”。渗透了数形结合的思想,培养了学生观察、综合分析的能力,增加了学习的自信心和学习的能力。在合作学习中,也培养了他们善于与人交流,合作,肯于负责任的良好个性品质。

3、教师适时地总结、深化,提高认识水平。教师在不断地总结中渗透数学思想方法,抓住时机培养学生思维的深刻性。如这几个基本函数的学习上一节课经历了从实例抽象概括出函数概念,本节课由函数的解析式画出函数的图像,总结出函数的性质,再利用所学知识解决有关问题。在师生的共同讨论中,深化所学知识,培养学生具备反省思维的能力。

4、课堂教学中充分体现了教师和学生的“双主作用”,其中“问题导学”的教学模式起了重要作用。只有教师创造性的教,学生才能创造性地学,一旦学生的学习活动充满创造性的时候,学习过程便充满美的魅力,成为学生积极进取、自我完善的过程。

不足:对y=-x2的读法,教师读的不规范,没有注意小的细节。在总结二

次函数性质时,对于开口宽度,我在备课时用a的绝对值来表示的,a为负数时与a为正数时正好相反,一个学生说对了,但不是老师要的答案,我当时没有多想,就说他说的不对。忽略了不同的说法。另外老师提出问题后,给学生去分析、归纳、总结的时间还不够,因此本节课中教师有包办现象。

五、得到的启示:

反思这节课,从课前准备到课堂实施再到课后作业效果和检测,我得到如下启示:

1、对教材的处理要灵活,要考虑到前后知识的联系。

2、学生是变化的,要能及时准确的了解学生情况。

3、要不断探索和完善自己的教学方法和手段,向其他老师学习。

4、不断提高学生学习兴趣,不断提高课堂实效。

5、加强个别辅导。指导学生

二次函数教案人教版【第二篇】

1、教材的地位和作用

二次函数是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,在初中的学习中已经给出了二次函数的图象及性质,学生已经基本掌握了二次函数的图象及一些性质,只是研究函数的方法都是按照函数解析式---定义域----图象----性质的方法进行的,基于这种情况,我认为本节课的作用是让学生借助于熟悉的函数来进一步学习研究函数的更一般的方法,即:利用解析式分析性质来推断函数图象。它可以进一步深化学生对函数概念与性质的理解与认识,使学生得到较系统的函数知识和研究函数的方法,站在新的高度研究函数的性质与图象。因此,本节课的内容十分重要。

2、教学的重点和难点

教学重点:使学生掌握二次函数的概念、性质和图象;从函数的性质推断图象的方法。

教学难点:掌握从函数的性质推断图象的方法。

按照新课标指出三维目标,根据任教班级学生的实际情况,本节课我确定的教学目标是:

1、知识与技能:掌握二次函数的性质与图象,能够借助于具体的二次函数,理解和掌握从函数的性质推断图象的方研究法。

2、过程与方法:通过老师的引导、点拨,让学生在分组合作、积极探索的氛围中,掌握从函数解析式、性质出发去认识函数图象的高度理解和研究函数的方法。

3、情感、态度、价值观:让学生感受数学思想方法之美、体会数学思想方法之重要;培养学生主动学习、合作交流的意识等。

遵循“教师的主导作用和学生的主体地位相统一的教学规律”,从教师的角色突出体现教师是设计者、组织者、引导者、合作者,经过教师对教材的分析理解,在教师的组织引导和师生互动过程中以问题为载体实施整个教学过程;在学生这方面,通过自主探索、合作交流、归纳方法等一系列活动为主线,感受知识的形成过程,拓展和完善自己的认知结构,进而体现出教学过程中教师与学生的双主体作用。

根据新课标的理念,我把整个的教学过程分为六个阶段,即:创设情景、提出问题

师生互动、探究新知

独立探究,巩固方法

强化训练,加深理解

小结归纳,拓展深化

布置作业,提高升华

的图象。目的是充分暴露学生在作图时不能很好的结合函数的性质而出现的错误或偏差问题,突出本节课的重要性。在学生总结交流的基础上教师指出学生的错误并以设问的方式提出本节课的目标:如何利用函数性质的研究来推断出较为准确的函数图象,进而引导学生进入师生互动、探究新知阶段。

在这个阶段,我引用课本所给的例题1请同学们以学习小组为单位尝试完成并作出总结发言。目的是:让学生充分参与,在合作探究中让学生最大限度地突破目标或暴露出在尝试研究过程中出现的分析障碍,即不能很好的把握函数的性质对图象的影响,不能把抽象的性质与直观的图象融会贯通,这样便于教师在与学生互动的过程中准确把握难点,各个击破,最终形成知识的迁移。在学生探讨后,教师选小组代表做总结发言,其他小组作出补充,教师引导从逐步完善函数性质的分析。其中,学生对于对称轴的确定、单调区间及单调性的分析阐述等可能存在困难。这时教师可以利用对解析式的分析结合多媒体演示引导学生得到分析的思路和解决的方法,在师生互动的过程中把函数的性质完善。之后进入环节3:再次让学生利用二次函数的性质推断出二次函数的图象,强化用二次函数的性质推断图象的关键。进而突破教学难点。让学生真正实现知识的迁移,完成整个探究过程,形成较为完整的新的认知体系。当然,在这个过程中可能会有学生提出图象为什么是曲线而不是直线等问题,为了消除学生的疑惑,进入第4个环节:教师要简单说明这是研究函数要考虑的一个重要的性质,是函数的凹凸性,后面我们将要给大家介绍,同学们可以阅读课本第110页的探索与研究。这样也给学生留下一个思考与探索的空间,培养学生课外阅读、自主研究的能力,增强学生学习数学的积极性。

在以上环节完成后,进入第5个环节:让学生对利用解析式分析性质然后推断函数图象的研究过程进行梳理并加以提炼、抽象、概括,得出研究函数的具体操作过程,使问题得以升华,拓宽学生的思维,将新知识内化到自己的认知结构中去。最终寻求到解决问题的方法。

教学的最终目标应该落实到每一个学生个体的内化与发展,由此让引导学生进入独立探究,巩固方法的阶段。例2在题目的设置上变换二次函数的开口方向,目的是一方面使学生加深对知识的理解,完善知识结构,另一方面使学生由简单地模仿和接受,变为对知识的主动认识,从而进一步提高分析、类比和综合的能力。学生在例1的基础上将会目标明确地进行函数性质的研究,然后推断出比较准确的函数图象,使新知得到有效巩固。

通过前面三个阶段的学习,学生应该基本掌握了本节课的相关知识。但对二次函数中系数a、b、c的对二次函数的影响还有待提高,为此我把课本中的例3进行改编,引导学生进入强化训练,加深理解阶段。一方面可以解决学生对奇偶性的质疑,另一方面也可以把学生对二次函数的认识提到新的高度。

第五个阶段:小结归纳,拓展深化。为了让学生能够站在更高的角度认识二次函数和掌握函数的一般研究方法,教师引导学生从两个方面总结。在你对函数图象与性质的关系有怎样的理解方面教师要引导、拓展,明确今天所学习的方法实际上是研究函数性质图象的一般方法,对于一些陌生的或较为复杂的函数只要借助于适当的方法得到相关的性质就可以推断出函数的图象,从而把学生的认知水平定格在一个新的高度去理解和认识函数问题。

最后一个阶段是布置作业,提高升华,作业的设置是分层落实。巩固题让学生复习解题思路,准确应用,以便举一反三。探究题通过对教材例题的改编,供学有余力的学生自主探索,提高他们分析问题、解决问题的能力。

以上六个阶段环环相扣,层层深入,并充分体现教师与学生的交流互动,在教师的整体调控下,学生通过动手操作,动眼观察,动脑思考,亲身经历了知识的形成和发展过程,并得以迁移内化。而最终的探究作业又将激发学生兴趣,带领学生进入对二次函数更进一步的思考和研究之中,从而达到知识在课堂以外的延伸。总之,这节课是本着“授之以渔”而非“授之以鱼”的理念来设计的。

二次函数教案人教版【第三篇】

通过学生的讨论,使学生更清楚以下事实:

(1)分解因式与整式的乘法是一种互逆关系;

(2)分解因式的结果要以积的形式表示;

(3)每个因式必须是整式,且每个因式的次数都必须低于原来的多项式的次数;

(4)必须分解到每个多项式不能再分解为止。

活动5:应用新知

例题学习:

p166例1、例2(略)

在教师的引导下,学生应用提公因式法共同完成例题。

让学生进一步理解提公因式法进行因式分解。

活动6:课堂练习

练习;

2.看谁连得准

x2-y2(x+1)2

9-25x2y(x-y)

x2+2x+1(3-5x)(3+5x)

xy-y2(x+y)(x-y)

3.下列哪些变形是因式分解,为什么?

(1)(a+3)(a-3)=a2-9

(2)a2-4=(a+2)(a-2)

(3)a2-b2+1=(a+b)(a-b)+1

(4)2πr+2πr=2π(r+r)

学生自主完成练习。

通过学生的反馈练习,使教师能全面了解学生对因式分解意义的理解是否到位,以便教师能及时地进行查缺补漏。

活动7:课堂小结

从今天的课程中,你学到了哪些知识?掌握了哪些方法?明白了哪些道理?

学生发言。

通过学生的回顾与反思,强化学生对因式分解意义的理解,进一步清楚地了解分解因式与整式的乘法的互逆关系,加深对类比的数学思想的理解。

活动8:课后作业

课本p170习题的第1、4大题。

学生自主完成

通过作业的巩固对因式分解,特别是提公因式法理解并学会应用。

板书设计(需要一直留在黑板上主板书)

提公因式法例题

1.因式分解的定义

2.提公因式法

二次函数教案人教版【第四篇】

1.经历探索二次函数y=ax2的图象的作法和性质的过程,获得利用图象研究函数性质的经验。

2.能够利用描点法作出函数y=ax2的图象,并能根据图象认识和理解二次函数y=ax2的性质,初步建立二次函数表达式与图象之间的联系。

3.能根据二次函数y=ax2的图象,探索二次函数的性质(开口方向、对称轴、顶点坐标)。

教学重点:二次函数y=ax2的图象的作法和性质

教学难点:建立二次函数表达式与图象之间的联系

教学方法:自主探索,数形结合

利用具体的二次函数图象讨论二次函数y=ax2的性质时,应尽可能多地运用小组活动的形式,通过学生之间的合作与交流,进行图象和图象之间的比较,表达式和表达式之间的比较,建立图象和表达式之间的联系,以达到学生对二次函数性质的真正理解。

一、认知准备:

1.正比例函数、一次函数、反比例函数的图象分别是什么?

2.画函数图象的方法和步骤是什么?(学生口答)

你会作二次函数y=ax2的图象吗?你想直观地了解它的性质吗?本节课我们一起探索。

二、新授:

(一)动手实践:作二次函数y=x2和y=-x2的图象

(同桌二人,南边作二次函数y=x2的图象,北边作二次函数y=-x2的图象,两名学生黑板完成)

(二)对照黑板图象议一议:(先由学生独立思考,再小组交流)

1.你能描述该图象的形状吗?

2.该图象与x轴有公共点吗?如果有公共点坐标是什么?

3.当x0时,随着x的增大,y如何变化?当x0时呢?

4.当x取什么值时,y值最小?最小值是什么?你是如何知道的?

5.该图象是轴对称图形吗?如果是,它的对称轴是什么?请你找出几对对称点。

(三)学生交流:

1.交流上面的五个问题(由问题1引出抛物线的概念,由问题2引出抛物线的顶点)

2.二次函数y=x2和y=-x2的图象有哪些相同点和不同点?

3.教师出示同一直角坐标系中的两个函数y=x2和y=-x2图象,根据图象回答:

(1)二次函数y=x2和y=-x2的图象关于哪条直线对称?

(2)两个图象关于哪个点对称?

(3)由y=x2的图象如何得到y=-x2的图象?

(四)动手做一做:

1.作出函数y=2x2和y=-2x2的图象

(同桌二人,南边作二次函数y=-2x2的图象,北边作二次函数y=2x2的图象,两名学生黑板完成)

2.对照黑板图象,数形结合,研讨性质:

(1)你能说出二次函数y=2x2具有哪些性质吗?

(2)你能说出二次函数y=-2x2具有哪些性质吗?

(3)你能发现二次函数y=ax2的图象有什么性质吗?

(学生分小组活动,交流各自的发现)

3.师生归纳总结二次函数y=ax2的图象及性质:

(1)二次函数y=ax2的图象是一条抛物线

(2)性质

a:开口方向:a0,抛物线开口向上,a〈0,抛物线开口向下[

b:顶点坐标是(0,0)

c:对称轴是y轴

d:最值:a0,当x=0时,y的最小值=0,a〈0,当x=0时,y的最大值=0

e:增减性:a0时,在对称轴的左侧(x0),y随x的增大而减小,在对称轴的右侧(x0),y随x的增大而增大,a〈0时,在对称轴的左侧(x0),y随x的增大而增大,在对称轴的右侧(x0),y随x的增大而减小。

4.应用:(1)说出二次函数y=1/3x2和y=-5x2有哪些性质

(2)说出二次函数y=4x2和y=-1/4x2有哪些相同点和不同点?

三、小结:

通过本节课学习,你有哪些收获?(学生小结)

1.会画二次函数y=ax2的图象,知道它的图象是一条抛物线

2.知道二次函数y=ax2的性质:

a:开口方向:a0,抛物线开口向上,a〈0,抛物线开口向下

b:顶点坐标是(0,0)

c:对称轴是y轴

d:最值:a0,当x=0时,y的最小值=0,a〈0,当x=0时,y的最大值=0

e:增减性:a0时,在对称轴的左侧(x0=,y随x的增大而减小,在对称轴的右侧(x0),y随x的增大而增大,a〈0时,在对称轴的左侧(x0),y随x的增大而增大,在对称轴的右侧(x0),y随x的增大而减小。

48 2199675
");