安徽数学 安徽高考数学知识点【优推4篇】

网友 分享 时间:

【导言】此例“安徽数学 安徽高考数学知识点【优推4篇】”的范文资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!

高考数学复习策略【第一篇】

1、高三要做题,因为高三考“三基”,基础知识、基本技能、基本方法,体现在平常的大量练习中对三基的把握。因此,要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。从基础题入手,以课本上的习题为准,反复练习打好基础,可以再找一些课外的习题练习,循序渐进,由易到难,对做过的典型题目要有一定的体会和变通,即按“学、练、思、结”程序对待典型的问题。

2、从近些年的高考数学试题中,我们可以明显地看出,高考十分注重对通性通法的考查。通性通法指的是某些规律性和普-山草香§ 遍意义的常规解题模式和常用的数学思想方法。这些方法只有在复习的过程中,对那些普遍性的东西不断地加以概括和总结,在具体解题中加以细心体会才能得到。

3、在数学复习阶段,还必须养成良好的解题习惯,如仔细阅读题目,看清数字,规范解题格式。高三阶段部分同学,平时做题只是写个答案,不注重解题过程,书写不规范,或者思维不够严谨,一些细节的地方考虑不周全,在正规的考试中即使答案对了,但由于过程不完整而扣分过多,所以无论是作业还是测验,都应把准确性放在第一位,而不是一味地去追求速度或技巧。

高考数学如何高效备考【第二篇】

1、数学基础差的同学,一定要老老实实的从课本开始,要复习一个章节,掌握一个章节。先看公式背熟,然后看课后习题,然后再翻课本看公式定理是怎么推导的,尤其是数学过程和应用案例。特别注意这些知识点为什么产生的。但记住,一定要循序渐进,不能着急。

2、在注重基础的同时,要将高中数学合理分类。高三复习过程中,速度快、容量大、方法多,做好笔记是不容忽视的重要环节,应该记关键思路和结论,不要面面俱到,课后整理笔记,因为这也是再学习的过程。再谈做题,看题思考才是复习数学的主旋律。

3、数学练习应具有针对性、同步性,如果见题就做常常起不到巩固作用,效益低、效果差;还要学 会限时完成,才能提高效率,增强紧迫感,不至于形成拖拉作风;正确对待数学难题,即使做不出, 也应该明确此刻的收获不一定小,因为实质上已经巩固了相关知识与方法,到了一定的目的,不能因此影响信心。

高中数学学习方法有哪些【第三篇】

1、课前预习:上课前要做预习,课前预习能提前了解将要学习的知识。

2、记笔记:指的是课堂笔记,每节课时间有限,老师一般讲的都是精华部分。

3、课后复习:通预习一样,也是行之有效的方法。

4、涉猎课外习题:多涉猎一些课外习题,学习它们的解题思路和方法。

5、学会归类总结:学习数学记得东西很多,如果单纯的记忆每个公式,不但增加记忆量而且容易忘。

6、建立纠错本:把经常出错的题目集中在一起。

7、写考试总结:考试总结可以帮助找出学习之中不足之处,以及知识的薄弱环节。

安徽高考数学知识点梳理【第四篇】

不等式分类:

不等式分为严格不等式与非严格不等式。一般地,用纯粹的大于号、小于号“>”“<”连接的不等式称为严格不等式,用不小于号(大于或等于号)、不大于号(小于或等于号)“≥”(大于等于符号)“≤”(小于等于符号)连接的不等式称为非严格不等式,或称广义不等式。

通常不等式中的数是实数,字母也代表实数,不等式的一般形式为F(x,y,……,z)≤G(x,y,……,z)(其中不等号也可以为<,≥,>中某一个),两边的解析式的公共定义域称为不等式的定义域,不等式既可以表达一个命题,也可以表示一个问题。

1、函数的单调性

(1)设x1、x2[a,b],x1x2那么

f(x1)f(x2)0f(x)在[a,b]上是增函数;

f(x1)f(x2)0f(x)在[a,b]上是减函数。

(2)设函数yf(x)在某个区间内可导,若f(x)0,则f(x)为增函数;若f(x)0,则f(x)为减函数。

2、函数的奇偶性

对于定义域内任意的x,都有f(-x)=f(x),则f(x)是偶函数;对于定义域内任意的x,都有f(x)f(x),则f(x)是奇函数。奇函数的图象关于原点对称,偶函数的图象关于y轴对称。

3、判别式

b2-4ac=0注:方程有两个相等的实根

b2-4ac>0注:方程有两个不等的实根

b2-4ac<0注:方程没有实根,有共轭复数根

4、两角和公式

sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)

ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

5、倍角公式

tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctga

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

6、抛物线

抛物线:y=ax_bx+c就是y等于ax的平方加上bx再加上c。

a>0时,抛物线开口向上;a<0时抛物线开口向下;c=0时抛物线经过原点;b=0时抛物线对称轴为y轴。

顶点式y=a(x+h)_k就是y等于a乘以(x+h)的平方+k,-h是顶点坐标的x,k是顶点坐标的y,一般用于求值与最小值。

抛物线标准方程:y^2=2px它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0)。

准线方程为x=-p/2由于抛物线的焦点可在任意半轴,故共有标准方程:y^2=2pxy^2=-2p_^2=2pyx^2=-2py。

48 2420999
");