2023年三角形内角和教学设计一等奖通用5篇

网友 分享 时间:

【导读预览】此篇优秀范文“2023年三角形内角和教学设计一等奖通用5篇”由阿拉题库网友为您整理分享,以供您参考学习之用,希望此篇资料对您有所帮助,喜欢就复制下载支持吧!

三角形内角和教学设计一等奖【第一篇】

人教版小学数学第八册第85页例5及”做一做”

1、让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。

2、让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想

3、在探索中体验发现的乐趣,增强学好数学的信心、

让学生经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程。

验证所有三角形的内角之和都是180°

多媒体课件。

量角器、正方形、剪刀、各类三角形(包括直角三角形、锐角三角形、钝角三角形)

一、 设疑引思

1、 分小组分别量出直角三角形、锐角三角形、钝角三角形的三个内角的度数、

2、 每小组请一位同学说出自已量的三角形中两个角的度数老师迅速”猜出”第三个角的度数、

3、 设问:老师为什么能很快”猜” 出第三个角的度数呢?

三角形还有许多奥妙,等待我们去探索、<导入新课,板书课题>

二、 探索交流,获取新知

1、 量一量:每个学生将自已刚才量出的三角形的内角和的度数相加,初步得出”三角形的内角和是180°”的结论、

2、 折一折:将正方形纸沿对角线对折,使之变成两个完全重合的三角形,发现:一个三角形的内角和就是正方形4个角内角和的一半,也就是360的一半,即180度, 初步验证”三角形的内角和是180°”的结论、

3、 拼一拼:学生先动手剪拼所准备的.三角形,进一步验证得出”三角形的内角和是180°”的结论、

4、 师利用课件演示将一个三角形的三个角拼成一个平角的过程、

5、 验证:flash演示三种三角形割补过程

发现1: 通过把直角三角形割补后,内角∠2,∠3 组成了一个()角,等于()度,∠1等于90度。所以直角三角形的内角和等于( )度。

发现2:通过把钝角、锐角三角形割补后,三角组成了一个( )角,而( )角等于( )度。所以锐角三角形和钝角三角形的内角和都是180度。

6、 小结:刚才能过量一量折一折拼一拼,你发现了什么?

生说,师板书:三角形的内角和———180°

三、 应用练习,拓展提高

1、书例5后”做一做”

思考:为什么不能画出一个有两个直角的三角形?(两个钝角、一个直角和一个钝角的三角形?)

2、下面哪三个角会在同一个三角形中。

(1)30、60、45、90

(2)52、46、54、80

(3)61、38、44、98

3、走向生活:

(1)那天,老师去买了一块三角形的玻璃,我拿着玻璃,刚到校门,一不小心,碰在门上了,摔成这几块(撕),哎,只有再去买一块,但尺寸我记不得了,该怎么办,你们能不能帮老师想想办法?我凭哪块碎片能再去配一块和原来一样的三角形玻璃吗?

(结合学生回答进行演示:延长两条边,交于一点,形成原来的三角形。所以:两个角确定了,三角形玻璃形状和大小也就确定了。)

四 作业:作业本

五 全课总结

总结:今天这节课我们研究了三角形的内角和,你们学到了哪些知识,有什么收获?

板书设计:三角形的内角和

三角形的内角和———180°

三角形内角和教学设计一等奖【第二篇】

1、学生动手操作,通过量、剪、拼、折的方法,探索并发现“三角形内角和等于180度”的规律。

2、在探究过程中,经历知识产生、发展和变化的过程,通过交流、比较,培养策略意识和初步的空间思维能力。

3、体验探究的过程和方法,感受思维提升的过程,激发求知欲和探索兴趣。

探究发现和验证“三角形的内角和180度”这一规律的过程,并归纳总结出规律。

对不同探究方法的指导和学生对规律的灵活应用。

课件、表格、学生准备不同类型的三角形各一个,量角器。

1、猜谜语

师:同学们喜欢猜谜语吗?

生:喜欢。

师:那么,下面老师给大家出个谜语。请听谜面:

形状似座山,稳定性能坚,三竿首尾连,学问不简单。(打一图形)大家一起说是什么?

生:三角形

2、介绍三角形按角的分类

师:真聪明!!板书“三角形”!那么,三角形按角分可以分为钝角三角形、直角三角形和锐角三角形这几类

师分别出示卡片贴于黑板。

3、激发学生探知心里

师:大家会不会画三角形啊?

生:会

师:下面请你拿出笔在本子上画出一个三角形,但是我有个要求:画出一个有两个直角的三角形。试一试吧!

生:试着画

师:画出来没有?

生:没有

师:画不出来了,是吗?

生:是

师:有两个直角的三角形为什么画不出来呢?这就是三角形中角的奥秘!这节课我们就来学习有关三角形角的知识“三角形内角和”(板书课题)

1、认识三角形的内角

看看这三个字,说说看,什么是三角形的内角?

生:就是三角形里面的角。

师:三角形有几个内角啊?

生:3个。

师:那么为了研究的时候比较方便,我们把这三个内角标上角1角2角3,请同学们也拿出桌子上三角形标出(教师标出)

师:你知道什么是三角形“内角和”吗?

生:三角形里面的角加起来的度数。

2、研究特殊三角形的内角和

师:分别拿出一个直角三角板,请同学们看看这属于什么三角形,说出每个角的度数,那这个三角形的内角和是多少度?

生:算一算:90°+60°+30°=180° 90°+45°+45°=180°

师:180°也是我们学习过的什么角?

生:平角

师:从刚才两个三角形的内角和的计算中,你发现了什么?

3、研究一般三角形的内角和

师:猜一猜,其它三角形的内角和是多少度呢?

生:

4、操作、验证

师:同学们猜的结果各不相同,那怎么办呀?你能想个办法验证一下吗?

要求:

(1)每4人为一个小组。

(2)每个小组都有不同类型的三角形,每种类型都需要验证,先讨论一下,怎样才能较快的完成任务?

(3)验证的方法不只一种,同学们要多动动脑子。

师:好,开始活动!

师:巡视指导

师:好!请一组汇报测量结果。

生:通过测量我们发现每个三角形的三个内角和都在180度左右。

师:其实三角形的内角和就是180度,只是因为我们在测量时存在了一些误差,所以测量出的结果不准确。

生:我是用撕的`方法,把直角三角形三个内角撕下来,拼在一起,拼成一个平角,是180度。

师:好!非常好!

师:有其它同学操作锐角三角形和钝角三角形的吗?谁愿意到前面来展示一下?生:展示锐角三角形(撕拼)

生:展示折一折我是用折的方法把锐角三角形三个角折在一起,组成一个平角,是180°。

师:老师也做了一个实验看一看是不是和大家得到结果一样呢?(多媒体展示)

现在老师问同学们,三角形的内角和是多少?

生:180度。

师:通过验证:我们知道了无论是锐角三角形,直角三角形还是钝角三角形,它们的内角和都是180°。板书:三角形内角和等于180度。现在让我们用自豪的、肯定的语气读出我们的发现:“三角形的内角和是180°”。

师:好!请同学们回忆一下,刚才课前老师让同学们画出有两个直角的三角形画出来了吗?

生:没有

师:那你能用这节课的知识解释一下为什么画不出来吗?

生:两个直角是180度,没有第三个角了。

师:如果想画出有两个角是钝角的三角形你能画出来吗?

生:大于180度,也画不出第三个角。师:所以,生活中不存在这样的三角形。

师:学会了知识,我们就要懂得去运用。

1、填空。

(1)三角形的内角和是()度。

(2)一个三角形的两个内角分别是80°和75°,它的另一个角是()。

2、求下面各角的度数。

(1)∠1=27° ∠2=53° ∠3=()这是一个()三角形。

(2)∠1=70° ∠2=50° ∠3=()这是一个()三角形。

3、判断每组中的三个角是不是同一个三角形中的三个内角。

(1)80° 95° 5°( )

(2)60° 70° 90°( )

(3)30° 40° 50°( )

4、红领巾是一个等腰三角形,求底角的度数。(多媒体出示)

对学生进行思品教育。

5、思考延伸。

根据三角形内角和是180度,算一算四边形和八边形的内角和是多少?

6、游戏:帮角找朋友每组卡片中,哪三个角可以组成三角形?)每组卡片中,哪三个角可以组成三角形?)60°90°45°30°⑴60°、90°、45°、30°54°46°52°

三角形内角和教学设计一等奖【第三篇】

《人教版九年义务教育教科书 数学》四年级下册《三角形的内角和》

1.使学生知道三角形的内角和是180 ,并能运用三角形的内角和是180 解决生活中常见的问题。

2.让学生经历量一量、折一折、拼一拼等动手操作的过程。通过观察、 判断、 交流和推理探索用多种方法证明三角形的内角和是180 。

3.培养学生自主学习、互动交流、合作探究的能力和习惯,培养学习数学的兴趣,感受学习数学的乐趣。

使学生知道三角形的内角和是180 ,并能运用它解决生活中常见的问题。

通过多种方法验证三角形的内角和是180 。

课件。四组教学用三角板。铅笔。大帆布兜子。固体胶。剪刀。筷子若干。

一、激趣导入,提炼学习方法

1.课程开始,教师耳朵上别着一根铅笔,肩背大帆布兜子,里面装着一个量角器和几把缺了直角的三角板,手拿一张不规则的白纸,以一位老木匠的身份出现在学生面前。激发学生的好奇心。然后自述:“你们好,我是一个有三十多年工作经验的老木匠了。我收了三个徒弟,他们已经从师学艺三年了,今天我想让他们下山挣钱,可又不放心,想出几道题考验考验他们,又不知我的题合不合适,大家想不想先当一会我的徒弟试试这几道题呢?”

2.继续以老木匠的身份说:前几天我造了一架柁,徒弟们能不能用我手中的工具验证一下横木和立柱是不是成直角的。

3.选择工具,总结方法。

让选择不同工具的同学用自己的方法验证。教师随机板书:量一量、拼一拼、折一折。

师:你们真是爱动脑筋的好徒弟,那么请听好师傅的第二个问题。

4.导入新课。

图中有很多三角形,不论什么样的三角形都有三个角,这三个角就叫做三角形的内角,徒弟们能不能用学过的方法或者你喜欢的方法求一求三角形三个内角的和是多少?(板书课题:三角形的内角和)

二、动手操作,探索交流新知

1.分组活动,探索新知

根据学生的选择把学生分成三组,分别采用量一量、折一折和拼一拼的方法探索新知。

量一量组同学发给以下几种学具:

折一折组同学发给上面的三角形一组。

拼一拼组同学发给上面的三角形一组、剪刀一把还有下面这样的白纸一张。

在学生探索的过程中教师要走近学生,与他们共同交流探讨,在学生有困难的时候要适当给予引导。

2.多方互动,交流新知

师:请我的大徒弟(量一量组)的同学先来汇报你们的研究成果。

(1)首先要求学生说一说你们小组是怎样进行探究的。

(2)说出你们组的探究结果怎样。(在此过程中教师不能急于纠正学生不正确的结论,因为这是知识的形成过程。)

(3)请学生说说通过探究活动你们组得出的结论是什么。

师:大徒弟就是大徒弟,汇报的真不错。二徒弟(折一折组)你们有没有更好的办法呢?

引导这一组从探究的过程和结论与同学、老师交流。

师:别看小徒弟(拼一拼组)这么小,方法可能是最好的。快来把你们的方法给大家汇报汇报。

同样引导这一组从探究的过程和结论与同学、老师交流。

3.思想碰撞,夯实新知

师:三个徒弟你们能说说谁的方法最好吗?

学生都会说自己的方法最好,再让其他同学发表自己的意见,此时生生之间,师生之间交流。(教师要引导学生说出量一量的`方法可能由于量的不够准确,所以结果可能比180 大一些,或小一些。而其他两种方法没有改变角的大小,所以他们的是正确的。)

师:不论你量的怎样认真都会有不准确的地方,这就叫误差。而其他两组同学的方法更准确。三角形的内角和就是180 。(板书:三角形的内角和是180 )

四、走进生活,提升运用能力

1.出示课前那架柁标出它的顶角是120 ,求它的一个底角是多少度?

2.给你三根木条,能做出一个有两个直角的三角形吗?

五、总结

师:徒弟们你们经过三年的苦学,终于学有所成了。今天,能说说你们在我这里都学到了什么手艺吗?

六、拓展新知,课外延伸

师:俗话说“活到老,学到老。”你们下山后还要继续探索,所以我要把我毕生都没有完成的任务交给你们去研究。

大屏幕出示:

能用你今天学过的知识和方法探索一下四边形的内角和是多少度吗?

三角形内角和教学设计一等奖【第四篇】

本节课我先引导学生任意画出不同类型的三角形,用通过量一量、算一算,得出三角形的内角和是180°或接近180°(测量误差),再引导学生通过剪拼的方法发现:各类三角形的三个内角都可以拼成一个平角。再引导学生通过折角的方法也发现这个结论,由此获得三角形的内角和是180°的结论。概念的形成没有直接给出结论,而是通过量、算、拼、折等活动,让学生探索、实验、发现、推理归纳出三角形的内角和是180°。

最后让学生运用结论解决实际问题,练习的安排上,注意练习层次性和趣味性,还设计了开放性的练习,由一个同学出题,其它同学回答。先给出三角形两个内角的度数,说出另外一个内角,有唯一的答案。给出三角形一个内角,说出其它两个内角,答案不唯一,可以得出无数个答案。让学生在游戏中拓展学生思维。

1、让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。

2、让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。

3、使学生体验成功的喜悦,激发学生主动学习数学的兴趣。

让学生经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程。

教具:多媒体课件、用彩色卡纸剪的相同的两个直角三角形、一个钝角三角形、一个锐角三角形。

学具:三角形

一、引入

(一)认识三角形的内角及三角形的内角和

师:我们已经学习了三角形的分类,谁能说说老师手上的是什么三角形?

师:今天我们来学习新的知识《三角形内角和》,谁能说说哪些角是三角形的内角?(让学生边说边指出来)

师:那三角形的内角和又是什么意思?(把三角形三个内角的度数合起来就叫三角形的内角和。)

(二)设疑,激发学生探究新知的心理

师:请同学们帮老师画一个三角形,能做到吗?(激发学生主动学习的心理)

生:能。

师:请听要求,画一个有两个内角是直角的三角形,开始。(设置矛盾,使学生在矛盾中去发现问题、探究问题。)

师:有谁画出来啦?

生1:不能画。

生2:只能画两个直角。

生3:……

师:问题出现在哪儿呢?这一定有什么奥秘?想不想知道?那就让我们一起来研究吧!

(揭示矛盾,巧妙引入新知的探究)

二、动手操作,探究三角形内角和

(一)猜一猜。

师:猜一猜三角形的内角和是多少度呢?同桌互相说说自己的看法。

生1:180°。

生2:不一定。

……

(二)操作、验证三角形内角和是180°。

1、量一量三角形的内角

动手量一量自己手中的三角形的内角度数。

师:所有三角形的内角和究竟是不是180°,你能用什么办法来证明,使别人相信呢?

生:可以先量出每个内角的度数,再加起来。

师:哦,也就是测量计算,是吗?

学生汇报结果。

师:请汇报自己测量的结果。

生1:180°。

生2:175°。

生3:182°。

……

2、拼一拼三角形的内角

学生操作

师:没有得到统一的结果。这个办法不能使人很信服,怎么办?还有其它办法吗?

生1:有。

生2:用拼合的办法,就是把三角形的三个内角放在一起,可以拼成一个平角。

师:怎样才能把三个内角放在一起呢?(学生操作)

生:把它们剪下来放在一起。

师:很好。

汇报验证结果。

师:通过拼合我们得出什么结论?

生1:锐角三角形的内角拼在一起是一个平角,所以锐角三角形的内角和是180°。

生2:直角三角形的内角和也是180°。

生3:钝角三角形的内角和还是180°。

课件演示验证结果。

师:请看屏幕,老师也来验证一下,是不是跟你们得到的结果一样?(播放课件)

师:我们可以得出一个怎样的结论?

生:三角形的内角和是180°。

(教师板书:三角形的内角和是180°学生齐读一遍。)

师:为什么用测量计算的方法不能得到统一的结果呢?

生1:量的不准。

生2:有的量角器有误差。

师:对,这就是测量的误差。

3、折一折三角形的内角

师:除了量、拼的方法,还有没有别的方法可以验证三角形的内角和是180°。

如果学生说不出来,教师便提示或示范。

学生操作

4、小结:三角形的内角和是180°。

三、解决疑问。

师:现在谁能说说不能画出有两个直角的一个三角形的原因?(让学生体验成功的喜悦)

生:因为三角形的内角和是180°,在一个三角形中如果有两个直角,它的内角和就大于180°。

师:在一个三角形中,有没有可能有两个钝角呢?

生:不可能。

师:为什么?

生:因为两个锐角和已经超过了180°。

师:那有没有可能有两个锐角呢?

生:有,在一个三角形中最少有两个内角是锐角。

四、应用三角形的内角和解决问题。

1、下面说法是否正确。

钝角三角形的内角和一定大于锐角三角形的内角和。()

在直角三角形中,两个锐角的和等于90度。()

在钝角三角形中两个锐角的和大于90度。()

④一个三角形中不可能有两个钝角。()

⑤三角形中有一个锐角是60度,那么这个三角形一定是个锐角三角形。()

2、看图求出未知角的度数。(知识的直接运用,数学信息很浅显)

3、游戏巩固。

由一个同学出题,其它同学回答。

(1)给出三角形两个内角,说出另外一个内角(有唯一的答案)。

(2)给出三角形一个内角,说出其它两个内角(答案不唯一,可以得出无数个答案)。

4、根据所学的知识算出四边形、正五边形、正六边形的内角和。

五、全课总结。

今天你学到了哪些知识?是怎样获取这些知识的?你感觉学得怎么样?

在本节课的学习活动过程中,先让学生进行测量、计算,但得不到统一的结果,再引导学生用把三个角拼在一起得到一个平角进行验证。这时,有部分学生在拼凑的过程中出现了困难,花费的时间较长,在这里用课件再演示一遍正好解决了这个问题。再引导学生用折三角形的方法也能验证三角形的内角和是180°。练习设计也具有许多优点,注意到练习的梯度,并由浅入深,照顾到不同层次学生的需求,也很有趣味性。在整个教学设计中,本着“学贵在思,思源于疑”的思想,不断创设问题情境,让学生去实验、去发现新知识的奥妙,从而让学生在动手操作、积极探索的活动中掌握知识,积累数学活动经验,发展空间观念和推理能力。

但因为是借班上课,对学生了解不多,学生前面的内容(三角形的特性和分类)还没学好,所以有些练习学生就没有预想的那么得心应手,如:知道等腰三角形的顶角求底角的题,学生掌握比较困难。

三角形内角和教学设计一等奖【第五篇】

人教版小学数学第八册第五单元第85页例5

教材分析: 《三角形的内角和》是义务教育课程标准实验教科书(数学)四年级下册第五单元《三角形》中的一个教学内容。这部分内容是在学生学习了角的度量,角的分类,三角形的认识,三角形的分类的基上进行教学的。它是三角形的一个重要性质,有助于学生理解三角形的三个内角之间的关系,也是进一步学习的基础。教材通过实际操作,引导学生用实验的方法探索并归纳出这一规律,即任意一个三角形,它的内角和都是180度。教材在编写上也深刻的体现出了让学生探究的特点,通过动手操作探究发现三角形内角和为180度。教学内容的核心思想体现在让学生经历猜想—验证—结论的过程,来认识和体验三角形内角和的特点。

学情分析:通过前面的学习,学生已经掌握了三角形的一些基础知识,会用工具量角、画角,具备了探索三角形内角和的知识与基础技能。在四年级上册《角的度量》的学习中,学生有接触到两把三角尺的内角和是180°;并在相关的补充习题和数学练习册的练习中,也有要求测量任意三角形的三个内角的度数并求出它们的和的练习,很多学生已经知道了三角形的内角和是180°。但是要真正理解和掌握需要进行验证,因此,学生在这节课上的主要任务是通过实验操作验证三角形的内角和是180°。

1、通过实验、操作、推理归纳出三角形内角和是180°。

2、能运用三角形的内角和是180°这一规律,求三角形未知角的度数并运用解决实际生活问题。

3、通过拼摆,感受数学的转化思想。

探究发现和验证“三角形的内角和180度”。

验证三角形的内角和是180度。

多媒体课件,锐角三角形、直角三角形、钝角三角形,剪刀,量角器等。

1、一个平角是多少度?等于几个直角?

2、如下图,已经∠ 1=35°,∠2=78°,求∠3是多少度?

1、说明三角形的三个内角和

说出手中三角形的类型(锐角三角形,直角三角形,钝角三角形)并说出三角形有几个角?

师(指出):三角形的这三个角叫做三角形的三个内角,这三个内角的`度数和叫做三角形的内角和。

板书课题:“三角形的内角和”。

揭示课题:今天我们一起来探究三角形的内角和有什么规律。

2、探究三角形的内角和规律

探究1:量一量,算一算

以小组为单位,用量角器计算出三种三角形的内角和各是多少度?

生讨论汇报,并引导学生发现:三角形的内角和接近180°。

师:三角形的内角和接近180°,那它到底与180° 有怎样的关系呢?

学生预设:有学生可能会说出三角形的内角和就是180°,这时老师可以提问,为什么就是180°?我们要进行验证,你有什么办法呢?

探究2:摆一摆,拼一拼

引导:我们刚刚每个三角形都量了三次角,每一次度量都有误差,所以量出来的内角和有误差。能不能换一种方法减少度量的次数,减少误差呢?

生可能很难想到,可以提示学生:把三个内角拼成一个角就只要量一次角。让我们一起动手做一做

如图:

(1)

锐角的三个内角拼成了一个平角,引导学生说出:锐角三角形的内角和是180°.

(2)

让学生小组合作用同样的方法,发现:直角三角形的内角和也是180°.

(3)

让学生独立用同样的方法,发现:钝角三角形的内角和也是180°.

引导学生归纳:三角形的内角和是180°。

是不是所有的三角形的内角和都是180°呢? (是,因为这三类三角形包括了所有三角形。)

板书:三角形的内角和是180°

1、在一个三角形中,∠1=140°,∠3=25°,你能求出∠2的度数吗?

学生独立完成,并说出原因:因为三角形的内角和是180°,也就是∠1+∠2+∠3=180°,借助图像

∠2 =180°-∠1-∠3 或 ∠2 =180°-(∠1+∠3)

= 180°-140°-25° =180°-(140°+25°)

=40°-25° =180°-165°

=15° =15°

2、一个等腰三角形的顶角是80°,它的两个底角各是多少度?

学生分析:因为等腰三角形的两个底角相等,又因为三角形的内角和是180°,所以

(180°-80°)÷2

=100°÷2

=50°

1、求出下面各角的度数。

(1) (2)

2、判断

(1)三角形任意两个内角的和大于第三个角。( )

(2)锐角三角形任意两个内角的和大于直角。( )

(3)有一个角是60°的等腰三角形不一定是等边三角形。( )

3、下面是两块三角形的玻璃打碎后留下的残片,你知道它们原来各是什么三角形吗?

( ) ( )

1、谈谈这节课你有什么收获?

2、课后思考题

三角形的内角和是180°,那长方形、正方形的内角和呢?(根据三角形的内角和是180°求,参考课本88页第12题,完成89页16题)

板书设计

48 1295403
");