浅谈提高统计预测精度的策略
提高统计预测精度可通过优化数据质量、选用合适模型、调整参数、增加样本量及引入新技术等策略实现。有效的交叉验证与持续的模型评估也不可或缺。下面是阿拉网友收集整理的浅谈提高统计预测精度的策略优秀范例,欢迎阅读参考,喜欢就支持吧!
统计预测,就是通过将统计资料作为基础,将经济发展的趋势、经济现象中存在的联系作为依据,选用合理的数学模型,对研究对象在某一条件中所达到的水平、规模进行预计。在统计预测中,包括直觉性判断、数学计算等。通过对已有的资料进行充分利用,提炼出相关的信息、内在的规律、事物在发展过程中的关系,在社会经济领域中采用有效的统计预测方法,进而为制定计划、政策带来一定的科学依据,因此,统计预测具有非常重大的意义。
因此,提高预测精度对统计预测来说是非常重要的,很多预测工作者都对统计预测精度给予高度重视。为提高统计预测精度,本文进行了相关探析。
一、异常数据的修正和剔除
二、统计数据预测数学模型的选择
统计数据预测数学模型的选择,必须要有足够的科学依据,选择的统计数据预测数学模型应符合客观规律、相关经济理论,可以将相关经济现象准确的表现、描述出来,可以在事物的发展状况充分的反映出来。在选择统计数据预测数学模型时,应将实际考察结果作为依据,这样才能对原始数据进行精确的外推、模拟、拟合。例如,运用数据时间序列对数据发展趋势进行外推时,在选择统计预测模型时,应采用阶差计算、散点图。其中,一些常见的统计数据预测数学模型及其特点,如下所示:
(1)直线:y=a+bt
(2)抛物线:y=a+bt+ct2
(3)指数曲线:y=a+bt
(4)饱和指数曲线:y=a+bt
(5)龚珀兹曲线:y=kabt
在实际工作中进行统计预测时,为选择有效、合理的统计数据预测数学模型,获取更好的数据发展趋势外推效果,应从数据时间序列的阶差、散点图着手进行。如果在进行统计预测工作中选用因果分析预测模型,则选取的自变量必须是事物发展变化的主要影响因素,该自变量应符合相应的客观规律、经济理论,选取的数学模型一定要合理,因变量和自变量的相关性系数要比较高,并具有明显的回归效果。要想获取高度精确的预测结果,选择一个有效、恰当的统计数据预测数学模型是非常重要的额。
三、统计数据预测数学模型的无偏性调整
无偏性调整原理
对于全部的统计数据预测数学模型,我们均假设该模型的预测误差ei-N0,2是为一个正态随机变量,Eei=0,Dei=2。但是,在大部分情况中,尤其是对统计数据预测数学模型进行线性化处理以后,所获得的拟合误差平均值并非为0,甚至远远偏离0。一旦出现这种情况,首先应适当对统计数据预测数学模型进行无偏性调整,直至拟合误差平均值为0,具有无偏性,同时不会影响到原来数学模型的有效性。其中,统计数据预测数学模型的无偏性调整原理为:在原来的统计数据预测数学模型上 加上 e,相应得,预测数学模型曲线将会向上平 移e,不难看出,无偏性调整法是非常简单的,统计数据预测数学模型预测结果的精确度将会得以提高。
举例说明
浙江省在2000-2010年期间的社会商品零售总额资料,如表1所示。 ( 单位:亿元 )
四、组合统计预测模型
组合预测原理
在统计预测工作中,可以采用多种统计预测方法对同一个预测问题进行预测,为了使统计预测精度变得更高,可以适当组合各种统计预测方法为一体,形成一种组合统计预测方法。假设同时存在多种统计预测方法可以对同一个统计预测问题进行预测,分别用来表示获得的统计预测值,则组合统计预测模型为
由于组合统计预测模型的预测精度深受组合预测系数向量K的影响,因此,K的确定对提升统计预测精度起着决定性的作用。 组合预测系数K 的确定方法有很多,如递归方差倒数法、方差倒数法、误差平方和最优最小组合法、等权法等,而前三种方法确定的合统计预测模型,其得到的预测精度相对更高。
举例说明
运用最优组合预测系数公式,能够求得出两种预测方法参与的组合统计预测模型,且或得的组 合预测系数分别为:
则组合统计预测模型为:
运用该组合统计预测模型所得到的拟合值及其误差,组合预测误差平方和为。和上述两个预测模型相比,采用该组合预测模型进行预测,能够使预测精度变得更高,假若将更多的预测模型组合在一起,得到的的预测精度就会变得更高一些。
五、小结
本文主要从异常数据的修正和剔除、统计数据预测数学模型的选择、统计数据预测数学模型的无偏性调整,这几个方面来提高统计预测精度,希望能够对统计预测工作者的工作带来一定的帮助。
参考文献:
[2] 程振源. 时间序列分析:历史回顾与未来展望[J]. 统计与决策. 2010(09)
[3] 吴载斌,王斌会. 数据挖掘软件的介绍及其评价[J]. 计算机时代. 2011(07)
[4] 谢煜,张智光. 预测支持系统的发展趋势研究[J]. 预测. 2014(03)
下一篇:返回列表