高一数学说课稿优选实用优秀8篇

网友 分享 时间:

通过生动的实例和直观的图形,深入浅出地讲解数学概念,激发学生兴趣,培养逻辑思维能力,促进课堂互动,增强学习效果。以下是阿拉网友为您整理的高一数学说课稿优选实用优秀8篇优秀范例,供您学习参考,希望对您有帮助。

高一数学说课稿优选【第一篇】

今天我说课的题目是,这节课所选用的教材为北师大版义务教育课程标准八年级教科书。

1、教材的地位和作用。

本节教材是初中数学____年级册的内容,是初中数学的重要内容之一。一方面,这是在学习了____的基础上,对____的进一步深入和拓展;另一方面,又为学习____等。

知识奠定了基础,是进一步研究____的工具性内容。因此本节课在教材中具有承上启下的作用。

2、学情分析。

学生在此之前已经学习了____,对____已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但是对于____的理解,(由于其抽象程度较高,)学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。

3、教学重难点。

根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我将本节课的重点确定为:

难点确定为:

根据新课标的教学理念,培养学生的数学素养和终身学习的能力,我确立了如下的三维目标:

1、知识与技能目标:

2、过程与方法目标:

3、情感态度与价值目标:

本节课我将采用启发式、讨论式结合的教学方法,以问题的提出、问题的解决为主线,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在引导分析时,给学生流出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。

另外,在教学过程当中,采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。

为了有序、有效地进行教学,本节课我主要安排以下教学环节:

(1)复习就知,温故知新。

设计意图:建构主义主张教学应从学生已有的知识体系出发,____是本节课深入研究____的认知基础,这样设计有利于引导学生顺利地进入学习情境。

(2)创设情境,提出问题。

设计意图:以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望。

通过情境创设,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节。

(3)发现问题,探求新知。

设计意图:现代数学教学论指出,教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过观察分析、独立思考、小组交流等活动,引导学生归纳。

(4)分析思考,加深理解。

设计意图:数学教学论指出,数学概念(定理等)要明确其内涵和外延(条件、结论、应用范围等),通过对定义的几个重要方面的阐述,使学生的认知结构得到优化,知识体系得到完善,使学生的数学理解又一次突破思维的难点。

通过了前面的学习,学生已经基本把握了本节课所要学习的内容,此时,他们急于寻找一块用武之地,以展示自我,体验成功,于是我把学生导入第____环节。

(5)强化训练,巩固双基。

设计意图:几道例题及练习题由浅入深、由易到难、各有侧重,其中例1……例2……体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,内化知识。

(6)小结归纳,拓展深化。

小结归纳不应该仅仅是知识的简单罗列,而且应该是优化认知结构,完善知识体系的一种有效手段,为了充分发挥学生的主体地位,让学生畅谈本节课的收获。

(7)当堂检测对比反馈。

(8)布置作业,提高升华。

以作业的巩固性和发展性为出发点,我设计了必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。总的设计意图是反馈教学,巩固提高。

以上是我对本节课的见解,不足之处敬请各位评委谅解!谢谢。

高一数学说课稿优选【第二篇】

两角差的余弦公式是推导其它十个公式的基础,所以我想着重讲这一小节,本节课的重点和难点是两角差的余弦公式的推导,所以在备课阶段,我研究了教材和教师用书,并且还在网上下载了许多这节课的教学设计。同时我根据我们班学生对知识理解的快慢,把两角差余弦公式的几何证明方法舍去了,想只讲它的向量的方法,有两方面的考虑,第一是刚结束平面向量的学习,对数量积还有印象,第二是从另一个方面让学生去体会向量作为一种工具的应用,从而使学生能对数学有那么一点点兴趣。

在我准备好之后,我又问了其他的数学老师,她们也同意只讲向量的证明方法,另一个方法对学生连提都不提,另外我还问了一下如何引入这一节的内容,并提了我的引入方法——将教材上的例题进行适当的改编,降低了难度,但是老师告诉我就直接点明主题就行了,加入引入的话会把学生绕晕的。我自己也想了想上次课讲数量积的时候对文科生用功的例子引入,结果可以想象,开头学生就觉得好难,等到讲数量积定义的时候学生完全听不进去了,那节课算是失败的。这一次我想了想采取了保守的策略——直接进入主题。

刚开始的时候效果还是不错的,通过让学生猜测15度《两角差的余弦公式》的`教学反思——潘红亚的余弦值引起了学生的兴趣,很自然的进入了公式的推导,但是我没有想到会在写角的终边与单位圆交点坐标时遇到了困难,学生一点想不起来三角函数是如何定义的,再加上当时快下课了,我没有进一步引导,而只是按照我自己的进度讲完推导过程,最后学生迷茫的表情让我很有挫败感,我就带着学生一块记忆公式,并告诉他们只要会用公式做题就可以了,听不懂就算了。

这节课过后,我自己静下心来想了想,我犯了数学课的大忌,一味地讲公式,套解法是最快得分的捷径,但它也是扼杀思考的最有效的管道。数学的根基在于理解而非公式或解法。通过最近的讲课,我发现张硕老师对我们讲的有关数学教学的理论我都没用上,所以我想等到讲必修五的时候,我需要的是花大量的时间备课,适当应用一些新的教学理论,改变一下数学课堂,实习就是将自己学到的理论应用于实践。

高一数学说课稿优选【第三篇】

本节课的主要任务是探究二分法基本原理,给出用二分法求方程近似解的基本步骤,使学生学会借助计算器用二分法求给定精确度的方程的近似解。通过探究让学生体验从特殊到一般的认识过程,渗透逐步逼近和无限逼近思想(极限思想),体会“近似是普遍的、精确则是特殊的”辩证唯物主义观点。引导学生用联系的观点理解有关内容,通过求方程的近似解感受函数、方程、不等式以及算法等内容的有机结合,使学生体会知识之间的联系。

所以本节课的本质是让学生体会函数与方程的思想、近似的思想、逼近的思想和初步感受程序化地处理问题的算法思想。

“二分法”的理论依据是“函数零点的存在性(定理)”,本节课是上节学习内容《方程的根与函数的零点》的自然延伸;是数学必修3算法教学的一个前奏和准备;同时渗透数形结合思想、近似思想、逼近思想和算法思想等。

学生已初步理解了函数图象与方程的根之间的关系,具备一定的用数形结合思想解决问题的能力,这为理解函数零点附近的函数值符号提供了知识准备。但学生仅是比较熟悉一元二次方程解与函数零点的关系,对于高次方程、超越方程与对应函数零点之间的联系的认识比较模糊,计算器的使用不够熟练,这些都给学生学习本节内容造成一定困难。

根据教材内容和学生的实际情况,本节课的教学目标设定如下:

通过具体实例理解二分法的概念及其适用条件,了解二分法是求方程近似解的一种方法,会用二分法求某些具体方程的近似解,从中体会函数与方程之间的联系,体会程序化解决问题的思想。

通过探究、展示、交流,养成良好的学习品质,增强合作意识。

通过具体问题体会逼近过程,感受精确与近似的相对统一。

“二分法”的思想方法简便而又应用广泛,所需的数学知识较少,算法流程比较简洁,便于编写计算机程序;利用计算器和多媒体辅助教学,直观明了;学生在生活中也有相关体验,所以易于被学生理解和掌握。但“二分法”不能用于求方程偶次重根的近似解,精确度概念不易理解。

本节课采用的是问题驱动、启发探究的教学方法。

通过分组合作、互动探究、搭建平台、分散难点的学习指导方法把问题逐步推进、拾级而上,并辅以多媒体教学手段,使学生自主探究二分法的原理。

本节课特点主要有以下几方面:

1、以问题驱动教学,激发学生的求知欲,体现了以学生为主的教学理念。

2、注重与现实生活中案例相结合,让学生体会数学来源于现实生活又可以解决现实生活中的问题。

以李咏主持的幸运52猜商品价格来创设情境,不仅激发学生学习兴趣,学生也在猜测的过程中体会二分法思想。

3、注重学生参与知识的形成过程,使他们“听”有所思,“学”有所获。

本节课中的每一个问题都是在师生交流中产生,在学生合作探究中解决,使学生经历了完整的学习过程,培养合作交流意识。

4、恰当地利用现代信息技术,帮助学生揭示数学本质。

程序求方程的近似解,界画活泼,充分体现了信息技术与数学课程有机整合。

以方程的根与函数的零点知识作基础,通过对求方程近似解的探究讨论,使学生主动参与数学实践活动;采用多媒体技术,大容量信息的呈现和生动形象的演示,激发学生学习兴趣、激活学生思维,掌握二分法的本质,完成教学目标。

另外尽管使用了科学计算器,但求一个方程的近似解也是很费时的,学生容易出现计算错误和产生急躁情绪;况且问题探究式教学跟学生的学习程度有很大关系,各小组的探究时间存在差异,教师要适时指导。

高一数学说课稿优选【第四篇】

引例:

例2:

例3:

4:

小结:

教学评价分析。

诊断性评价:

1.按常规,学生很可能想到先探究两角和的正弦公式,怎样想到先研究两角差的余弦公式是一个难点(但非重点),教学时可以直接提出研究两角差的余弦公式。但后面补充老教材的证明方法,让学生明白和与差内在的联系性与统一性,努力让学习过程自然。

2.尽管教材在前面的习题中,已经为用向量法证明两角差的余弦公式做了铺垫,多数学生仍难以想到.教师需要引导学生,联想到向量的数量积公式和单位圆上点的坐标特点,努力使数学思维显得自然、合理。

3.用向量的数量积公式证明两角差的余弦公式时,学生容易犯思维不严谨的错误,教学时需要引导学生搞清楚两角差与相应向量的夹角的联系与区别。

预期效果:。

1、让学生在掌握两角差的余弦公式探究方法的基础上,能够自我总结形成公式探究的一般方法。

2、激发学生的探究欲望,能够独立或合作提出推导其它三角恒等式的方案,形成对三角恒等变换的本质认识,加深对灵活运用公式的理解。

3、培养学生的“问题意识”,在探索的过程中学会将“知识问题化”,大胆、合理地提出猜测,通过证明、完善,最终达到将“问题知识化”的目的.

高一数学说课稿优选【第五篇】

我说课的题目是《集合》。

《集合》是人教版必修1,第一章第一节的内容。

一.教材分析(首先我们一起来探讨一下教材的地位和内容)。

集合与函数的内容历来是高中数学课程的传统内容,也是后继学习的基础。作为现代数学基础的集合论,它是一个具有独特地位的数学分支。高中数学课程是将集合作为一种语言来学习,它是刻画函数概念的基础知识和必备工具。

二、教学目标(接下来我们分析一下本节的教学目标,新《课程标准》制定的学习目标是)。

(1)、学习目标。

了解集合的含义与表示,理解集合间的关系和运算,感受集合语言的意义和作用。

(2)过程与方法。

启发学生发现问题,提出问题,通过学生的合作学习,探索出结论,并能有条理的阐述自己的观点。

(3)、情感态度与价值观。

通过概念的引入,让学生感受从特殊到一般的认知规律;激发学生学习数学的兴趣和积极性,陶冶学生的情操,培养学生坚忍不拔的意志。

三.教学重点与难点(接下来我们来看一下本节的重点和难点是什么)。

重点:(本节的重点应该是)使学生了解集合的含义与表示,理解集合间的关系和运算,会用集合语言表达数学对象或数学内容)。

难点:(在本节的学习过程中,学生们可能遇到的难点是)。

(1)(要)区别较多的新概念及相应的新符号。

(2)(如何)选择恰当的方法来准确表示具体的集合。

四.教法分析。

1、以学生为中心,重点采用了问题探究和启发式相结合的教学方法。

2、从实例、到类比、到推广的问题探究,激发学生学习兴趣,培养学习能力启发,引导学生得出概念,深化概念。

3、利用多媒体辅助教学,节省时间,增大信息量,增强直观形象性。

五.说教学过程(下面我以集合的含义与表示为例谈一谈我的教学设计)(那么整个教学流程分这么几块)。

“集合的含义与表示”的教学流程:

1问题引入。

上体育课时,体育老师喊:高一**班同学集合!听到口令,咱班全体同学便会从四面八方聚集到体育老师身边,而那些不是咱班的学生便会自动走开。这样一来,体育来说的一声“集合”就把“某些特指的对象集在一起”了。

数学中的“集合”和体育老师的“集合”是一个概念吗?

2构建新知(那么构建新知的时候,主要围绕着以下几点展开)。

(1)集合的含义。

数学中的“集合”和体育老师的集合并不是同一概念。体育老师所说的“集合”是动词,而数学中的集合是名词。同学们在体育老师的集合号令下形成的整体就是数学中集合的涵义。

高一数学说课稿优选【第六篇】

尊敬的各位评委、各位老师大家好!我说课的题目是《函数的单调性》,我将从四个方面来阐述我对这节课的设计。

函数的单调性是函数的重要性质。从知识的网络结构上看,函数的单调性既是函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数的单调性等内容的基础,在研究各种具体函数的性质和应用、解决各种问题中都有着广泛的应用。函数单调性概念的建立过程中蕴涵诸多数学思想方法,对于进一步探索、研究函数的其他性质有很强的启发与示范作用。

根据函数单调性在整个教材内容中的地位与作用,本节课教学应实现如下教学目标:

知识与技能使学生理解函数单调性的概念,初步掌握判别函数单调性的方法;

过程与方法引导学生通过观察、归纳、抽象、概括,自主建构单调增函数、单调减函数等概念;能运用函数单调性概念解决简单的问题;使学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力。

情感态度与价值观在函数单调性的学习过程中,使学生体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。

根据上述教学目标,本节课的教学重点是函数单调性的概念形成和初步运用。虽然高一学生已经有一定的抽象思维能力,但函数单调性概念对他们来说还是比较抽象的。因此,本节课的学习难点是函数单调性的概念形成。

为了实现本节课的教学目标,在教法上我采取了:

1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参与的积极性。

2、在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念。

3、在鼓励学生主体参与的同时,不可忽视教师的主导作用,要教会学生清晰的思维、严谨的推理,并顺利地完成书面表达。

在学法上我重视了:

1、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的质的飞跃。

2、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和分析解决问题的能力。

函数单调性的概念产生和形成是本节课的难点,为了突破这一难点,在教学设计上采用了下列四个环节。

(一)创设情境,提出问题。

(问题情境)(播放中央电视台天气预报的音乐)。如图为某地区20xx年元旦这一天24小时内的气温变化图,观察这张气温变化图:

高一数学说课稿优选【第七篇】

本节课是高中数学第二册第七章《曲线和圆的方程》第五节《曲线和方程》,这是一节教学研讨课,是在大力提倡改革课堂教学模式、提高课堂效益、开发学生智力等多方面能力的前提下开设的,目的是努力寻求一种全新的课堂教学模式,能够让信息技术和数学课本知识有效的融合在一起,让学生知道,学习数学,不仅仅是做题目,而且是研究题目,提高了学生的学习数学的兴趣。

《平面动点的轨迹》这部分内容从理论上揭示了几何中的“形”与代数中的“数”相统一的关系,为“作形判数”与“就数论形”的相互转化开辟了途径,同时也体现解析几何的基本思想。轨迹问题具有深厚的生活背景,求平面动点的轨迹方程涉及集合、方程、三角平面几何等基础知识,其中渗透着运动与变化、数形结合的等思想,是中学数学的重要内容,也是历年高考数学考查的重点之一。

“以知识为载体,注重学生的能力、良好的意志品质及合作学习精神的培养”是本教学设计中贯穿始终的一个重要教学理念。为此本课的知识目标设定为三条:

(1)了解解析几何的基本思想、明确它所研究的基本问题。

(2)了解用坐标法研究几何问题的有关知识和观点。

(3)初步掌握根据已知条件求曲线方程的方法,同时进一步加深理解“曲线的方程、方程的曲线”的概念。

本节课的设计着眼点是让学生集体参与、主动参与,培养学生动手、动脑的能力,鼓励多向思维、积极活动、勇于探索。知识的学习和能力的提高是同步的,从本课的设计不难看出对学生能力目标是:通过自我思考、同桌交流、师生互议、实际探究等课堂活动,获取知识。同时,培养学生探究学习、合作学习的意识,强化数形结合、化归与转化等数学思想,提高分析问题、解决问题的能力。

设计者试图利用动画演示轨迹的形成过程,使课堂气氛活跃,让学生感受动点轨迹的动态美,使课堂教学内容形象化,从而激发学生学习数学的兴趣和学好教学的信心。而鼓励学生积极思考、勇于探索,培养学生良好的意志品质,树立竞争意识与合作精神,感受合作交流带来的成功感,树立自信心,激发提出问题和解决问题的勇气则是本节课要达成的个性品质和情感目标。

新课程强调教师要调整自己的角色,改变传统的教育方式,教师要由传统意义上知识的传授者和学生的管理者,改变成为以学生为中心,让学生真正成为学习的主人而不是知识的奴隶,基于此,根据本节课的教学内容和学生的实际水平,采用的是引导发现法和计算机软件——《几何画板》实验辅助教学。

平面解析几何的核心是“坐标法”,用代数的方法研究几何图的性质。主要包括两个部分:求曲线的方程;通过研究方程研究曲线的性质。在传统的教学中,动点并不动。《几何画板》的特点是“动”。可以在动态中观察数学现象,探究几何图形的性质。在《几何画板》支持下,“动点”真的动起来了。在动态中观察,观察变动中不变的规律触及到问题的本质,可以更好地让学生参与到教学过程中来。让学生动手操作,发现数学规律。

第一步:让学生借助画板动手探究轨迹。

第二步:要求学生求出轨迹方程、验证轨迹。

解法一:设m(x,y)则,由点p是圆上的点得,,化简得:

设计意图:借助数学实验,把原本属于教师行为的设疑激趣还原于学生,让学生自己在实践过程中发现疑问,更容易激发学生学习的热情,促使他们主动发现、主动学习。

第一步:分解动作,向学生提出几个问题:

问题2:cd是圆a的直径,直线l与cd交于m,求m的轨迹方程。

问题3、改变点b的位置,当点b在圆外时,你的结论该做怎样的修改呢?

学生活动:第一步:利用网络平台展示学生得到的轨迹(教师有意识的整合在一起)。

第二步:课堂完成学生归纳出来的问题1,问题2和3课后完成。

整个教学过程,体现了四个统一:既学习书本知识与投身实践的统一、书本学习与现代信息技术学习的统一、书本知识与资源拓展的统一、课堂学习与课外实践的统一。本节课学生精神饱满、兴趣浓厚、合作积极,与教师保持良好的互动,还不时产生一些争执,给我提出了一些新的问题,折射出我不足的方面,促进了我的进步与提高,师生间的教与学就像一面镜子,互相折射,共同进步。

通过本节课的学习,学生不仅掌握了动点轨迹的求法,而且通过作图掌握了《几何画板》这个软件,通过方程的推导,更加熟悉了动点轨迹的求法,而且通过作图掌握了几何的基本思想“以数论形,数形结合”,提高了运用数形结合、等价转化等数学思想方法解决问题的能力,通过思路的探索和轨迹方程的推导,学生的思维品质得以优化,学会辩证地看待问题,享受了数学的美。

高一数学说课稿优选【第八篇】

各位评委、老师:

大家好,我说课的内容是人教a版《普通高中课程标准实验教科书a版数学必修一》第二章《对数函数及其性质》。

我说课的程序主要有教材分析、学情分析、教法与学法、教学过程、板书设计等五个部分。

本节内容是在学习了指数函数和对数概念后,通过具体实例了解对数函数模型的实际背景,学习对数函数概念进而研究对数函数的图象和性质。学生已掌握的指数函数的图象和性质为类比学习对数函数提供了前提,同时对数函数作为常用数学模型在人口、考古等生活生产中有广泛的应用,为学生进一步学习、参加生产和实际生活提供必要的基础知识。而本节蕴含的归纳、类比、数形结合的思想为培养学生探究、发现的能力奠定基础。

《数学课程标准》要求通过具体实例初步理解对数函数的概念,体会对数函数是一类重要的函数模型,能借助计算器或计算机画出具体对数函数的图象,探究并了解对数函数的单调性与特殊点。依据以上标准和学生学习发展方面的要求,我制定了如下教学目标:

知识与技能:理解对数函数的概念、掌握对数函数的图象和性质;培养学生观察、分析、归纳、类比的能力。

过程与方法:类比指数函数的学习,从特殊到一般,通过对不同底数的对数函数图象的分析、归纳出对数函数的性质。

情感态度价值观:培养学生对待知识的科学态度、勇于探索和创新的精神.

结合教学内容和教学目标,考虑到学生对抽象事物的理解可能存在困难,制定如下的教学重点、难点:

重点:对数函数的概念、图象和性质;

难点:对数函数的图象、性质,底数a对对数函数的图象和性质的影响;

对于高一的学生来说,刚进入一个新的学习阶段,有较强的好奇心,且在之前指数函数的学习中已初步掌握了研究函数的方法,但对抽象事物的理解有所欠缺,对对数概念的理解还不够透彻。

教学过程是教师和学生共同参与的过程,要启发学生自主性学习,充分调动学生的积极性、主动性,通过指数函数的图象、性质类比学习对数函数的`图象、性质,在教学中引导学生围绕图象思考,数形结合,加强直观教学,同时在例题的讲解中,由易到难,由具体到抽象。为有效地渗透数学思想方法,结合所要完成的教学目标,并为激发学生的学习兴趣,我采用以引导探究为主,启发学生思考、分析、归纳,在提出猜想后通过投影仪演示底数变化对对数函数图象的影响。

老师的教是为学生更好地学,学生是活动的主体,我确定学法为自主探究法,学生在老师的引导下通过观察、分析做出归纳。

教学过程分为以下环节:

(一)实例引入、直观感知。

1、在某细胞分裂过程中,细胞个数y是分裂次数x的函数,因此,知道x的值(输入值是分裂次数)就能求出y的值(输出值为细胞的个数),这样就建立了一个细胞个数和分裂次数x之间的函数关系式.

问题一:这是一个怎样的函数模型类型呢?设计意图:复习指数函数。

设计意图:既为了更好地理解函数,也是为了让学生更好地理解对数函数的概念.

2、在2.2.1的例6中,考古学家利用估算出土文物或古遗址的年代,对于每一个c14含量p,通过关系式,都有唯一确定的年代与之对应.同理,对于每一个对数式中的,任取一个正的实数值,均有唯一的值与之对应,所以的函数。

问题三:你能在以前的学习中找到类似以上两个函数的例子吗?(促进学生思考这种函数的特点)。

问题四:你能类比指数函数得到此类函数的一般式吗?

设计意图:体现了类比和特殊到一般的数学思想。

(二)总结类比、形成概念。

问题五:你能根据指数函数的定义给出对数函数的定义吗?

(师生共同归纳出对数函数的定义)。

问题六:与中的x,y的相同之处是什么?不同之处是什么?

设计意图:促进学生更好地理解对数函数与指数函数的联系,从而得到对数函数的定义域。

(三)类比探究、分析归纳。

问题:有了研究指数函数的经历,你会如何研究对数函数的性质?

设计意图:提示学生进行类比学习。

合作探究1;在同一直角坐标系中画出下列函数的图象,并观察图象,探求他们之间的关系。

合作探究2:结合指数函数的学习经验,你有什么猜想?在同一坐标系中画出与验证。

设计意图:体现“从特殊到一般”、“从具体到抽象”的方法。

教师通过几何画板动态演示对数函数图象随底数变化的规律,进一步促进学生理解对数函数的图象特点。

合作探究3:对照指数函数的性质,总结归纳对数函数的性质.

(学生讨论并交流各自的发现成果,教师结合学生的交流,适时归纳总结,并板书对数函数的性质)。

(四)知识应用、提升能力。

例1:求下列函数的定义域。

(1)()(2)()。

(该题主要考查对数函数的定义域,可在此总结函数定义域的限制)。

例2:利用对数函数的性质,比较下列各组数中两个数的大小:

(1),(2),

(3),(4),,

思考巩固:已知,比较m,n的大小。

(五)师生交流、归纳小结。

由学生小结,相互补充完善,教师再次强调对数函数在生活生产中的应用,既首尾呼应又为后续学习对数函数的应用铺垫。

(六)布置作业。

教材p73练习1,2。

设计意图:练习难度不大,是对本节知识的巩固。

48 3491910
");