人教七年级数学教案实用精彩5篇

网友 分享 时间:

人教七年级数学教案【第一篇】

教学目标1、理解频数、频数分布的意义,学会制作频数分布表;2、学会画频数分布直方图和频数折线图。

教学重点:学会画频数分布直方图。

教学难点:确定组距和组数。

教学目标:掌握频数分布直方图和频数折线图的画法,并能用频数分布直方图解释数据中蕴含的信息,进一步体会统计图表在描述数据中的作用。

教学重点:画频数分布直方图。

教学难点:解释数据中蕴含的信息。

教学过程。

一、复习导入。

人教七年级数学教案【第二篇】

根据学生的实际情况,从生活入手,结合教材内容。通过本学期数学课堂教学,夯实学生的基础,提高学生的基本技能,培养学生学习数学知识和运用数学知识的能力,帮助学生初步建立数学思维模式。最终圆满完成七年级下册数学教学任务。

通过上学期考试情况,发现本班学生的数学成绩不甚理想。基础知识不扎实,计算能力较差,思路不灵活,缺乏创新思维能力,尤其是解难题的能力低下。总体上来看,低分很多,两极分化较为严重。

知识与技能目标:认识实数和相交线及平行线,理解平行线的判定及其证明;掌握平面直角坐标系;学会解二元一次方程组以及不等式的具体解法。

过程与方法目标:学会抽取实际问题中的数学信息,发展几何思维模式。培养学生的观察和思维能力,尤其是自主探索的能力。

情感与态度目标:培养学生学习数学的兴趣,认识数学源自生活实践,最终回归生活。

第五章、相交线与平行线:本章主要学习有理数的基本性质及运算。本章重点内容是有理数的概念,性质和运算。本章的难点在于理解有理数的基本性质、运算法则,并将它们应用到解决实际问题和计算中。

第六章、实数:本章主要是学习单项式和多项式的加减运算。本章重点内容是单项式、多项式、同类项的概念;合并同类项及去括号的法则及整式的加减运算。本章难点在于理解合并同类项和去括号的法则。

第七章、平面直角坐标系:本章主要学习一元一次方程的概念、等式的基本性质、一元一次方程的解法及应用。本章重点内容是理解等式的基本性质;掌握解一元一次方程的一般步骤;列方程解决实际问题的基本思路。本章难点在于解一元一次方程,并利用一元一次方程解决简单的实际问题。

第八章、二元一次方程组及不等式组:本章主要学习线段和角有关的性质。本章的重点是区别直线、射线、线段,角的有关性质和计算;理解互为余角、互为补角的性质及应用。本章的难点在于线段和角的有关计算。

1、潜心钻研教材,结合学生实际情况,进行针对性的备课,精心设置课堂教学内容和模式。上好每一堂课,阅好每一份试卷,搞好每一节辅导,组织好每一次测验。

2、开展丰富多彩的课外活动,课外调查,向学生介绍数学家、数学史、数学趣题,喻教于乐,激发学生的学习兴趣,挖掘学生的潜能,培养数学特长生。

3、开展分层教学实验,使不同的学生学到不同的知识,使人人能学到有用的知识,使不同的人得到不同的发展,获得成功感,使优生更优,差生逐渐赶上。

教学进度计划安排如下:。

第一周正数和负数及有理数5课时。

第二周有理数的加减法5课时。

第三周有理数的乘法5课时。

第四周有理数的乘方5课时。

第五周第一单元复习与单元测试5课时。

第六周测试质量分析及小结5课时。

第七周整式----单项式5课时。

第八周整式----多项式5课时。

第九周整式的加减5课时。

第十周期中复习及段考5课时。

第十一周段考测试质量分析及小结5课时。

第十六周。

第十七周。

第十八周。

第十九周。

第二十周。

人教七年级数学教案【第三篇】

教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。下面网友为大家分享初中数学教案设计,欢迎大家参考借鉴。

教学目标。

1.理解二元一次方程及二元一次方程的解的概念;。

2.学会求出某二元一次方程的几个解和检验某对数值是否为二元一次方程的解;。

3.学会把二元一次方程中的一个未知数用另一个未知数的一次式来表示;。

4.在解决问题的过程中,渗透类比的思想方法,并渗透德育教育。

教学重点、难点。

重点:二元一次方程的意义及二元一次方程的解的概念.

难点:把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程.

教学过程。

1.情景导入:

新闻链接:桐乡70岁以上老人可领取生活补助,得到方程:80a+150b=

2.新课教学:

引导学生观察方程80a+150b=902880与一元一次方程有异同?

得出二元一次方程的概念:含有两个未知数,并且所含未知数的项的次数都是1次的方程叫做二元一次方程.

3.合作学习:

4.课堂练习:

1)已知:5xm-2yn=4是二元一次方程,则m+n=;。

2)二元一次方程2x-y=3中,方程可变形为y=当x=2时,y=_。

5.课堂总结:

(1)二元一次方程的意义及二元一次方程的解的概念(注意书写格式);。

(2)二元一次方程解的不定性和相关性;。

(3)会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式.

作业布置。

本章的课后的方程式巩固提高练习。

人教七年级数学教案【第四篇】

1.掌握多项式、多项式的项及其次数,常数项的概念。

2.确定一个多项式的项、项数和次数。

3.由单项式与多项式归纳出整式概念。

4.在自主探索的学习过程中,引导学生观察、归纳、理解多项式,并与单项式进行比较,运用化归思想,让学到的知识系统化。

重点:掌握整式及多项式的有关概念,掌握多项式的定义、多项式的项和次数,以及常数项等概念。

难点:多项式的次数。

学法指导。

从实际问题引入多项式的项,项数和次数的概念,通过具体分析所列式子,归纳多项式,注意和单项式的概念进行比较,帮助学生理解。在掌握单项式和多项式相关概念的过程中,体会式子是解决问题和进行交流的重要工具之一,体会在实际问题情景中运用整式的意义,进一步发展学生数学符号感。

人教七年级数学教案【第五篇】

1、教材的地位和作用。

本节课是在数的开方的基础上引进无理数的概念,并将数从有理数范围扩充到实数范围。在中学阶段,大多数问题是在实数的范围内研究的,它也是进一步二次根式、一元二次方程以及函数等知识的基础。因此,让学生正确而深刻地理解实数是非常重要的。

无理数的引入,数系的扩展充满着对立和统一的辩证关系及分类思想,所以这节课不仅仅是完善学生的知识结构,而且还是培养学生想象能力,渗透数学思想,感受数美的有效载体,也是发展学生逻辑思维能力的重要内容。

2、教学重难点。

根据教学大纲对这部分内容的要求及本课的特点,结合学生实际情况,我把本节课的教学重难点确定为:

重点:了解无理数和实数的概念;

知道实数与数轴上的点具有一一对应的关系。

难点:对无理数的认识。

3、教学目标。

知识与技能:了解无理数和实数的概念;

知道实数与数轴上的点具有一一对应的关系。

过程与方法:通过无理数的引入,经历数系从有理数扩展到实数的过程,

培养从特殊到一般、具体到抽象的逻辑思维能力;

渗透数形结合及分类的.思想。

情感与态度:了解无理数的产生过程,使学生感受丰富的数学文化,体验数学来源于生活及应用于生活的意识,更好的激发学习兴趣。

二、学情分析。

新的《课程标准》对学生掌握实数要求不高,但实数的知识却贯穿中学数学始终,所以我们只能逐步加深学生对实数的认识。

在学习本节课前,学生已掌握平方根、立方根同时也初步接触过等具体的无理数。无理数的概念比较抽象,特别是无理数在数轴上的表示、实数与数轴上的一一对应关系都需要一个渐进的理解过程。要让学生充分讨论与思考,归纳与总结,历经知识发展与运用。

三、教法学法分析。

1.教法分析。

为了更好的把握教学内容的整体性、连续性,本节课采用问题导入法引入新课,让学生回顾认识数的过程;通过类比归纳法和探究分析法经历实数的认识过程,从而较好地完成实数概念的构建和实数与数轴上的点的一一对应关系的认识,达到教学目标。

2.学法分析。

为了有效地突出重点、突破难点,本节课我采用以学生自主探究、小组合作交流相结合,把无理数和实数的概念及知道实数与数轴的点的一一对应关系确定为教学重点;无理数的认识确定为教学难点。课堂上充份调动学生的积极性,启发学生进行观察、类比、分析,让参与到概念的建立,真正的让学生进行探究,突出学生教学主体的地位。

四、教学媒体。

教学形式上充分利用电脑多媒体优化数学课堂教学,从生活实际出发,让学生亲身感受数学的奇妙,激发学生学习的兴趣。增强用数学的意识,养成及时归纳总结的良好习惯,提高课堂效率。

五、课堂结构。

曾经有人说过这么一句话“人的心灵深处都有一个根深蒂固的需要,这就是希望感到自己是一个发现者,研究者,探究者。”为此在教学过程中我努力贯彻“教师为主导,学生为主体,探究为主线,思维为核心”的教学思想,我设计了以下课堂教学流程。

第一个环节:探究新知,引入课题。

第二个环节:自学新知,自主探索。

第三个环节:探究新知,拓展深化。

第四个环节:应用新知,及时反馈。

第五个环节:课堂小结,反思新知。

第六个环节:布置作业,巩固新知。

六、教学过程。

1、探究新知,引入课题。

问题1有理数包括整数和分数,如果将下列分数写成小数的形式,你有什么发现?

师生活动:学生完成分数到小数的换算,观察小数的形式。教师逐步引导学生对小数点后数字的探究,让学生发现:任意一个分数一定都能写出有限小数或是无限循环小数的形式;进一步引导学生对整数的研究,让学生得出结论:整数可以看成小数点后是0的小数。

最后总结:任何一个有理数都可以写成有限小数或是无限循环小数的形式;反过来,任何有限小数和无限循环小数也都是有理数。

48 1938762
");