高一数学上册必修三重要知识点精选8篇

网友 分享 时间:

【导言】此例“高一数学上册必修三重要知识点精选8篇”的范文资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!

高一年级数学必修三知识点整理【第一篇】

随机事件的定义:

在随机试验中,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件叫做随机事件,随机事件通常用大写英文字母A、B、C等表示。

必然事件的定义:

必然会发生的事件叫做必然事件;

不可能事件:

肯定不会发生的事件叫做不可能事件;

概率的定义:

在大量进行重复试验时,事件A发生的频率

总是接近于某个常数,在它附近摆动。这时就把这个常数叫做事件A的概率,记作P(A)。

m,n的意义:事件A在n次试验中发生了m次。

因0≤m≤n,所以,0≤P(A)≤1,必然事件的概率为1,不可能发生的事件的概率0。

随机事件概率的定义:

对于给定的随机事件A,随着试验次数的增加,事件A发生的频率

总是接近于区间[0,1]中的某个常数,我们就把这个常数叫做事件A的概率,记作P(A)。

频率的稳定性:

即大量重复试验时,任何结果(事件)出现的频率尽管是随机的,却“稳定”在某一个常数附近,试验的次数越多,频率与这个常数的偏差大的可能性越小,这一常数就成为该事件的概率;

“频率”和“概率”这两个概念的区别是:

频率具有随机性,它反映的是某一随机事件出现的频繁程度,它反映的是随机事件出现的可能性;概率是一个客观常数,它反映了随机事件的属性。

高一年级数学必修三知识点梳理【第二篇】

一、立体几何常用公式

S(圆柱全面积)=2πr(r+L);

V(圆柱体积)=Sh;

S(圆锥全面积)=πr(r+L);

V(圆锥体积)=1/3Sh;

S(圆台全面积)=π(r^2+R^2+rL+RL);

V(圆台体积)=1/3[s+S+√(s+S)]h;

S(球面积)=4πR^2;

V(球体积)=4/3πR^3.

二、立体几何常用定理

(1)用一个平面去截一个球,截面是圆面。

(2)球心和截面圆心的连线垂直于截面。

(3)球心到截面的距离d与球的半径R及截面半径r有下面关系:r=√(R^2-d^2).

(4)球面被经过球心的平面载得的圆叫做大圆,被不经过球心的载面截得的圆叫做小圆。

(5)在球面上两点之间连线的最短长度,就是经过这两点的大圆在这两点间的一段劣弧的长度,这个弧长叫做两点间的球面距离。

高一必修三数学知识点总结【第三篇】

总体和样本

①在统计学中,把研究对象的全体叫做总体。

②把每个研究对象叫做个体。

③把总体中个体的总数叫做总体容量。

④为了研究总体的有关性质,一般从总体中随机抽取一部分:x1,x2,....,x-x研究,我们称它为样本。其中个体的个数称为样本容量。

简单随机抽样

也叫纯随机抽样。就是从总体中不加任何分组、划类、排队等,完全随。

机地抽取调查单位。特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。简单随机抽样是其它各种抽样形式的基础,高三。通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。

简单随机抽样常用的方法

①抽签法

②随机数表法

③计算机模拟法

④使用统计软件直接抽取。

在简单随机抽样的样本容量设计中,主要考虑:

①总体变异情况;

②允许误差范围;

③概率保证程度。

抽签法

①给调查对象群体中的每一个对象编号;

②准备抽签的工具,实施抽签;

③对样本中的每一个个体进行测量或调查。

拓展阅读:高二数学学习方法

一、提高听课的效率是关键

课前预习能提高听课的针对性。预习中发现的难点,就是听课的重点;对预习中遇到的没有掌握好的有关的旧知识,可进行补缺,以减少听课过程中的困难;有助于提高思维能力,预习后把自己理解了的东西与老师的讲解进行比较、分析即可提高自己思维水平;预习还可以培养自己的自学能力。其次就是听课要全神贯注。

二、做好复习和总结工作

做好及时的复习。课完课的当天,必须做好当天的复习。复习的有效方法不是一遍遍地看书或笔记,而是采取回忆式的复习,然后打开笔记与书本,对照一下还有哪些没记清的,把它补起来,就使得当天上课内容巩固下来,同时也就检查了当天课堂听课的效果如何,也为改进听课方法及提高听课效果提出必要的改进措施。

三、指导做一定量的练习题

做题的目的在于检查你学的知识,方法是否掌握得很好。如果你掌握得不准,甚至有偏差,那么多做题的结果,反而巩固了你的缺欠,因此,要在准确地把握住基本知识和方法的基础上做一定量的练习是必要的。而对于中档题,尢其要讲究做题的效益,这就需要在做题后进行一定的“反思”,思考一下本题所用的基础知识,把它们联系起来,你就会得到更多的经验和教训,更重要的是养成善于思考的好习惯,这将大大有利于你今后的学习。

高一年级必修三数学知识点整理【第四篇】

1、直线方程形式

一般式:Ax+By+C=0(AB≠0)

斜截式:y=kx+b(k是斜率b是x轴截距)

点斜式:y-y1=k(x-x1)(直线过定点(x1,y1)

两点式:(y-y1)/(x-x1)=(y-y2)/(x-x2)(直线过定点(x1,y1),(x2,y2)

截距式:x/a+y/b=1(a是x轴截距,b是y轴截距)

做题过程中,点斜式和斜截式用的最多(两种合占90%以上),一般式属于中间过渡形态。

在与圆及圆锥曲线结合的过程中,还要用到点到直线距离公式。

2、直线方程的局限性

各种不同形式的直线方程的局限性:

(1)点斜式和斜截式都不能表示斜率不存在的直线;

(2)两点式不能表示与坐标轴平行的直线;

(3)截距式不能表示与坐标轴平行或过原点的直线;

(4)直线方程的一般式中系数A、B不能同时为零。

高一年级数学必修三知识点梳理【第五篇】

幂函数

定义:

形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。

定义域和值域:

当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的值域

性质:

对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:

首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=—k,则x=1/(x^k),显然x≠0,函数的定义域是(—∞,0)∪(0,+∞)。因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:

排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;

排除了为0这种可能,即对于x

排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。

48 454762
");