高压直流供电 高压直流供电(精编3篇)

网友 分享 时间:

【导言】此例“高压直流供电 高压直流供电(精编3篇)”的范文资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!

高压直流供电范文1

关键词通讯设备;高压电源;结构设计

近年来,由于通信行业的发展迅速,通信设备等各方面要求也随之提高,使得对承担设备各方面运行的供电系统的要求也逐渐提升,其中包括高压电源的容量需求,还有可靠性和节能型等各方面要求也随之提高。其中,通信设备高压电源中采用高压直流供电系统HVDC是较好的解决方法。

1通信设备电源概述

生活中要保持正常工作的电子设备的运行就要有稳定的电源供电,针对市电的常规供电一般是50Hz的使用额定,而野外使用的电子设备,是通过发电机提供电源(如车载或船载设备)。除此之外特殊的通信设备也会要求直流电,对于这种情况需配有整流器,或逆变器。整流器的作用是可以将交流电变成直流电。如果要改变电压后再提供给用电设备,还需要增加一台变压器。交流电在日常工作中容易出现电压不稳定的情况,就需要调压器进行补偿,稳压器的作用能达到稳压效果,考虑谐波影响还要增加滤波器滤,因此变压器、整流器、滤波器、调压器、稳压器是通信设备电源的必备部分。此外,提供电源的用电设备在设计时应达到以下要求:(1)要有输送交流电和直流电给负载部分的能力,还要确保有稳定的最大负荷输出电流;(2)在输入电压存在波动的情况下,要确保输出电压稳定,并要求稳定系数达到较高数值;(3)传输至负载的直流电接近于恒定直流电流,因此波纹因素较小;(4)电源功率要符合要求。效率是判断电源性能的一项重要重要指标。效率高,意味着在电源正常运行时耗散功率小,热量少,有利于节约能源,保证设备的使用年限。对于电源的技术要求,不仅有电气设计,很关键的一部分还包括结构设计。能确保电气设计方案顺利实施的首要条件。特别是在高压电源设计过程中要选定正确设计结构,规划布局合理,使元器件固定妥当,考虑到通风散热、电磁兼容问题,以及隔振设计、三防设计、高压的安全防护设计等。

2高压电源结构设计

组成高压电源的元件

常见的通信设备在安装速调管、分行波管和大功率晶体管时一般使用高功放管。除了电源灯丝外,都是上千伏的高压电源,对于一般慢波线和收集极电压高,大电流。比如3kW行波管收集极工作电压是14kV,电流则为;慢波线电压为,电流为。因此高功放若是电子管(行波管和速调管)必须要确保能供上述高压电源。

结构规划原则

(1)一般来说高压电源的主元器体积与重量都大。特别是大型电气设备变压器,总重达120kg。重型设备尽量装在下部。使整体重心低而稳定。布局要便于安装和维修。(2)电源变压器,存在大功率整流管及高压线圈等,正常运转时会产生较多热量,布局应考虑通风性。尽量装有风机冷却,或者空气流通的位置。(3)常出现故障的元器件,如压敏电阻器、隔离开关等应要安置有利于更换的位置。(4)规划设计高压电源的结构方面,首先要考虑用电安全问题。高压电设备在检修时可能会发生触电危险,因此要求控制机构在检修时要保证电流接地。对于高压端子及高压导线绝缘性能要求高,绝缘距离要求大,防止出现短路故障。严格遵守绝缘距离设定,确保人身安全。对于交流与直流部分注意区分,避免互相干扰。特高压情况,比如1kV以上的电源设备,要设有专门开关。当人为打开门或者抽屉柜时,门控开关启动断开电源,防止触电事故。金属面板上禁止直接安置电表,电位器调节旋扭等,要充分做好防护工作。(5)电源变压器的铁心部件会出现漏磁现象,当它连接低频放大器的部分元器件或导线时,会马上放大50Hz的电信号,因而产生交流声。由此,需要隔离低频放大器部分,如:控保部分和变压器使用同一底板,确保进行磁屏蔽。(6)通信设备使用的高压直流供电系统,存在输出正负极未接地的情况,这就要求在两极安置开关;如果部分单极断路器无法达到高电压等级要求,可以使用串联多极分担分断电弧电压。

3高压电源结构组装举例

此结构布局图的特点是:(1)便于散热。抽屉要做成密封式,首先要在上面加上盖板,为了便于散热,要形成一定的风道。在面板上开设通风孔,加上通风窗和滤尘网,在后面板装上轴流风机,作用是抽风。由于阻流圈和变压器的发热量比较大,因此安装设置更靠近风机位置,目的是尽快散热,防止其它元件受到影响。为了使高压电源的各元件散热更快,将风机于通风窗的位置对角放置,以此来加上风路,增加散热效率,改变后的风路流向如图中箭头所示。(2)屏蔽设计。通信设备要注意控制漏磁场,避免受到过多干扰,应将数字显示板和电路印制板加上磁屏蔽罩,才能避免此类问题发生。(3)绝缘设计。通信设备在电源高压影响下,首先要考虑绝缘设计,将8mm厚的环氧酚醛层压玻璃布板作为底板,可有效绝缘。此外,这种材料还有优良的介电性能、机械性能和耐水性。部分高压设备是不能直接接触地面的,需要加底板,如果用金属底板,会导致底板直接和机架相连接,因此设计时要注意做好绝缘处理,将结构设计科学化、复杂化。如果将环氧酚醛层压玻璃布板安装在高压器件下面,同时要维持高压设备之间一定的距离,还要保证高压设备和机架间的距离,防止两者间发生击穿放电现象,然后将各种设备科学地连接起来。

4以HVDC高压电源供电系统为例

(1)技术方面。针对目前使用的HVDC的供电系统,它的电源系统的系统结构与现在存在的48V通信电源的很相似,并且十多年来被广泛使用在国家电力行业部门,这种高压直流供电系统有很高的产品技术成熟,并且属于完全国产化的系统设施。(2)结构方面。HVDC供电系统的结构比较简单,一般来说结构简单的系统更能保证高效率的运行和更高的安全性。直流供电系统在模块化设计基础下,有实际运行了数十年的经验,更能证明其安全可靠和简单特性。同时直流供电系统的模块化设计还使该系统具有增加扩容和方面维护等优点。(3)效率及节能方面。HVDC系统在UPS系统的基础上去掉了UPS的逆变部分,将系统的谐波含量减少,因此相比传统UPS系统,不管在各部分效率还是整体效率方面都有较大的提升。

5结论

以上可得,高压电源的主要特点是电压高、发热量大、重量大、漏磁影响大。本文主要对高压电源结构设计原则进行了定性分析。随着近几年对高压直流供电的研究兴起,越来越多的研究者对高压直流供电的优势给予了肯定。

参考文献

高压直流供电范文2

关键词高压直流电;供电技术;节约能耗

1 高压直流供电技术的优势

在技术方面的优势

可靠性大幅提升,高压直流供电技术引入的主要目的就在于提升系统的安全性。UPS系统本身仅并联主机具有冗余备份,系统组件之间更多地是串联关系,其可用性是各部分组件可靠性的连乘结果,总体可靠性低于单个组件的可靠性。反观直流系统,系统的并联整流模块、蓄电池组均构成了冗余关系,不可靠性是各组件连乘结果,总体可靠性高于单个组件的可靠性。

高压直流供电能大大节约能耗

目前大量使用的UPS主机均为在线双变换型,在负载率大于50%时,其转换效率与开关电源相近。但一个不容忽视的现实是,为了保证UPS系统的可靠性,UPS主机均采用n+1(n=1、2、3)方式运行,加之受后端负载输入的谐波和波峰因数的影响,UPS主机并不能满足运行,通常UPS单机的设计最大稳定运行负载率仅为35―53%。而受后端设备虚提功耗和业务发展的影响,很多UPS系统通常在寿命中后期才能达到设计负载率,甚至根本不能达到设计负载率,UPS主机单机长期运行在很低的负载率,其转换效率通常为80%多,甚至更低。对于直流电源系统而言,因其采用模块化结构,可根据输出负载的大小,由监控模块、监控系统或现场值守人员灵活控制模块的开机运行数量,使整流器模块的负载率始终保持在较高的水平,从而使系统的转换效率保持在较高的水平。

直流供电的带载能力大大提高

UPS系统带载能力受两个因素的制约,一是负载的功率因数,以国内某大型UPS厂商的某型主机为例,在输出功率因数为(容性)时,其最大允许负载率仅为50%;二是负载的电流峰值系数,通常UPS主机的设计波峰因数为3,如果负载的电流峰值系数大于3,则UPS主机将降容使用。对于直流系统而言,不存在功率因数的问题;因其并联了内阻极低的大容量蓄电池组,加之整流器模块有大量的富余(充电和备用),其负载高电流峰值系数的负荷能力很强,不需专门考虑安全富余容量。

2 高压直流技术的应用前景分析

高压直流技术的应用现状

目前对高压直流供电的应用,总体情况是电信运营商非常热心,热切希望大规模高压直流供电,与电源系统厂商一起进行了大量了理论研究,国内业界已就包括高压直流供电电压、接地方式等关键问题达成了共识,高压直流供电已在部分本地网进行了试点。与之形成鲜明对比的是,到目前为止,后端IT设备还没有针对高压直流供电的电源技术标准,也没有大型IT厂商宣布支持后端设备高压直流供电。高压直流供电有多种电压可供选择,因为缺乏后端设备厂商的响应,国内高压直流供电的思路均是基于不对后端用电设备进行改造,供电电压的选择就必须保证在电源系统各种运行模式下,后端设备均可正常工作,目前国内业界对高压直流供电的标称电压已达成共识,即选用240V电压等级。

制约高压直流技术大规模应用的主要因素

后端设备的适应性

从目前运营商的试点情况来看,尽管采用单相UPS电源供电的后端设备绝大多数都支持高压直流供电,高压直流供电基本可保障后端设备的运行。但高压直流供电毕竟不是后端设备的电源标准,采用高压直流供电实质上是改变了设备电源的标称运行环境,因而对运营商而言存在较多的风险:技术风险:使用UPS电源供电的后端设备种类繁多,从目前运营商的试点情况来看,还是有部分设备不支持高压直流供电,对于具体的设备能否支持高压直流供电,能否在高压直流供电的额定输出电压、最低输出电压、最高输出电压下正常运行,只能针对具体设备进行电路分析和实际实验。对于在高压直流供电下能正常运行的后端设备,也需要用时间来检验其寿命是否会发生变化。法律风险:改变设备的电源运行环境,实质上是改变了采购合同约定的运行条件,如后端设备发生故障,运营商将处于较为不利的法律地位,面临着较大的风险。同时,对于高压直流供电最大应用场合的IDC机房,运营商通常与客户签订有严格的SLA(服务等级协议),供电电源的改变也会将运营商推向不利的地位,一旦客户托管设备发生故障,尤其是涉及到对服务连续性极为敏感的金融、大型SP等客户时,双方可能陷入长时间的纠纷,或以运营商的让步而告终。从现网试点情况来看,运营商普遍的心态还是感觉“高压直流电源稳定可靠,不会出现问题”,还没有从法律层面认真思考可能遇到的法律纠纷。

配套器件

高压直流供电涉及的元器件中,整流器模块所需的功率电子器件、电容、变压器等器件较为通用,供应不存在任何问题,但熔断器、断路器等配电保护元件就较为匮乏。高压直流供电系统日常运行电压(浮充电压)即已达到270V,普通熔断器均为交流熔断器,已不能支持这一电压等级,只能选用专用的直流熔断器,但目前直流熔熔断器生产厂家很少,市面上也难以见到。断路器的情况要好一些,普通热磁脱扣型塑壳断路器单极工作电压已可达250V,ABB、施耐德等大型厂商也可提供直流工作电压达220V的微型断路器,这两类断路器双极使用时工作电压均远远高于高压直流系统可能的最高电压(均充电压)288V,可为高压直流系统保护。但采用这两类断路器也存在较多的问题:1.技术问题:整定值易漂移;塑壳断路器安装尺寸较大;微型断路器易被碰刮误断、整定值通常不能调整、分断短路电流电流小。2.商务问题:产量较小,价格较高,供货周期长。

3 高压直流技术应用的推广

制约高压直流供电技术大规模应用的因素也许还有很多,根本的原因还在于没有后端设备高压直流供电的标准化,鉴于后端设备,尤其是IT设备,绝大部分的应用还在于社会的其他行业,仅仅依靠通信行业的力量难以有效推动电源标准的改进的,应该积极推动全社会对高压直流供电的认知,进而产生体现国家意志的法律、政府规章和技术标准,推动使用高压直流供电的IT设备的大规模生产和应用。在后端设备具备高压直流供电的条件,并大规模商用后,电源系统的标准化将迎刃而解,市场这只无形的手将推动前端电源零部件及整机厂商全力进行研发和生产,现阶段前端电源系统存在的种种制约将不复存在。

参考文献:

[1]赵俊莉。电气化铁道用有源电力滤波器方案研究[J].机车电传动。2000

[2]李春林。配电网中谐波源识别方法比较[J].东北电力技术。2004

高压直流供电范文3

关键词高压直流电源 供电结构 336V电压 国内外应用

中图分类号: 文献标识码:B 文章编号:1006-1010(2014)-13-0080-07

1 引言

随着我国通信行业的高速发展,互联网的大规模普及与运用,网络视听、电子商务、电子信息等依托基础网络的业务不断拓展。数据业务的快速增长,使其市场业务份额大幅提高,通信局站的UPS使用量大增,系统的可靠性和维护的简便性越来越受到关注,而UPS在这2方面均存在很多问题。尽管双总线UPS供电系统增加了UPS供电的可靠性,但其加大了机房使用面积,增加了设备投资,也加大了能源浪费。336V直流供电系统的系统效率和可靠性均要高于UPS供电系统,这一点已经得到了业内人士的公认。

2 高压直流电源(HVDC)概述

(1)定义:高压是相对通信电源常用的48V来说的“高压”,电压范围在200~400V。

(2)其发展历程如图1所示:

(3)高压直流提出的技术背景

UPS存在的问题

交流UPS供电模式在通信系统中存在的安全性、经济性等方面的问题越来越凸显,主要体现在能耗高,可靠性低,维护、扩容难度大,建设成本高等方面;

高频开关电源技术普及,生产成本已经低于变压器电源;

转型业务、数据通信、各种增值业务平台在电信运营商业务中的比重日趋增大,安全和节能方面的需求对电源保障提出了更高的要求。

3 高压直流供电的技术基础

IT设备电源模块工作原理

IDC机房设备以服务器为主,现在生产的每一台服务器自身都有2个以上的电源模块,模块之间是主备用关系。正常工作时2个电源模块负载均担,当一只模块出现故障或进行检修时,另一只模块承担全部负荷。IT设备内部电源是一个可靠性很高的独立模块,每一只电源模块的基本工作原理如图2所示,对于功能强、使用在重要场合的服务器或小型机,均配置2个或2个以上的模块并联运行。

图2 IT设备电源模块工作原理示意图

由图2和图3可以看出,虽然IT设备输入的是交流电源,但核心部分还是DC/DC变换电路,因此只要输入一个范围合适的直流电压给DC/DC变换电路,就同样能满足IT设备安全工作的要求。图中因为输入端没有工频变压器,所以输入直流不会产生短路阻抗,就没有必要非得交流输入。如果输入的直流合理配上蓄电池,辅以远程监控,构成一个可靠的直流供电系统,就可取代交流供电系统。

现有IT设备的配电结构

目前IDC机房针对IT设备的配电系统有3种结构:交流配电、机架直流配电、设备直流配电。首先对配电系统里的几个结构单元进行介绍。

PDU(Power Distribution Unit):电源分配单元,具有电源分配和管理功能。电源分配是指电流及电压和接口的分配;电源管理是指开关控制(包括远程控制)、电路中的各种参数监视、线路切换、承载的限制、电源插口匹配安装、线缆的整理、空间的管理、电涌防护和极性检测。

PSU(Power Supply Unit):驱动电源,是计算机中的一个组件,负责将交流电转成稳定的12V、5V及直流电,是供计算机内其它组件使用的电源。服务器内部基础工作电压均为12V直流,不受服务器电源外部输入电压的影响,最后都统一转换成12V直流供电。

VRM(Voltage Regulator Module):电压调节模块,其主要是通过对主板上直流/直流(简称DC/DC)转换电路的控制来为CPU提供稳定的工作电压,同时也对电脑启动时电压的变化情况和时序作出明确的要求。根据VRM标准制定的电源电路能够满足不同CPU的要求,降低人工干预的复杂性,简化了稳压电路的电压控制设计。

AC/DC是交流输入,直流输出。DC/DC是直流输入,直流输出。

(1)交流配电结构

图4的方案为交流UPS系统所采取的供电结构,380V的三相交流电压经过UPS电源(其内部结构为1个AC/DC转换模块和1个DC/AC转换模块,先做1次交流变直流变换,再做1次直流变交流变换),输出为380V/220V的交流电压,通过PDU变压器后变成220V的交流电。在PSU中,交流220V先通过1个AC/DC转换模块变换为直流380V,再由隔离的DC/DC变压器降为典型的直流12V以供电源使用。

(2)机架直流配电结构

图5的配电方式是在服务器机架上(图中rack部分)将电压变化为直流380V供电,通过在服务器机架内配置AC/DC转换模块〖〗,产生隔离的直流380V,但是有严重缺陷,机架内AC/DC转换模块的数量影响了用电效率的提高。

(3)设备直流配电结构

图6的配电方式为336V直流系统所采取的供电结构,它取消了UPS中的逆变器(即DC/AC转换模块)、PDU中的变压器、PSU中的AC/DC转换模块,使整个电路结构变得很简单,用电效率得到了极大提高。

高压直流电压范围选取

目前,因无相应的技术标准或规范对高压直流系统的供电电压作出相应规定,各方试点的电压等级不尽相同,所以有必要对供电电压的选择进行相应分析确定出合适的供电电压。

电压等级的选择应主要从以下几个方面进行考虑:

电压选取的基本原则

元器件的耐压范围

配电设备的电压等级

配电线路的金属消耗

与蓄电池的匹配

安全性

(1)电压选取的基本原则

现在IDC机房的服务器内部一般使用SSI高频开关电源,把外部输入的交流电转化为内部电子电路所用的直流电。计算机设备的高频开关电源的基本工作原理如图7所示。

将图7进行简化,如图8所示,实际上在交流输入的时候,在正半周,电流的走向是:A―2―C―D―4―B;在负半周的时候,电流的走向是:B―3―C―D―1―A,整流管1、3和2、4轮流导通。

理论上,一般服务器的输入电压要求是220V±10%,即198V~242V,因此Uo的取值范围是252V~308V,这个值是电源的标称电压。实际上,CD后端的DC/DC变换器是通过调节开关脉冲的占空比即开关管的导通时间来控制输出直流电的电压的。因此,电压范围可以高于308V。

当采用直流电压直接输入AB时,由于电压不变相,整流管2、4长期导通,整流桥可视为直连。如图8所示,这样电压从AB端直接传到CD端。若不考虑整流管自身的损耗,则Ui≈Uo

直流电压范围上限计算(整流二极管最大反向电压):

通常PC机、服务器铭牌标明工作电压范围180~240V,由此得出电压上限为:

U高=240×=339V (1)

直流电压范围下限计算:

经过对多种设备的现场测试,IT设备电源模块交流工作电压在180~240V的范围均能正常工作,根据IT设备电源模块恒功率特性和整流元件直流波形发热这2方面的特性来考虑,直流工作电压最低电压为:

(2)

(2)元器件的耐压范围

大部份的电子零件(Caps,MOSFET等)的耐压范围为450~500VDC,此耐压范围的元器件技术成熟且价格低廉。考虑故障排除和启动时的电压脉冲峰值,高压直流供电系统最高工作电压不宜超过400V。

(3)配电设备的电压等级

多芯电力电缆的绝缘电压为690V/1 000V,线对地绝缘电压为690V,线之间绝缘电压为1 000V。从表1中的资料可以看出,高压直流供电系统工作电压不超过400V时,配电设备均可以支持。

表1 部分厂家断路器直流应用的技术特性

设备

厂家 设备型号 额定工作

电压/V 额定绝缘电压/V 额定工作

电流/A

施耐德 微型断路器

C65H/L-DC 440(2P) - 1~63

塑壳断路器NS系列 500 750 100~630

框架断路器NW系列 500/900 1 000 1 000~

4 000

ABB 微型断路器

S260UC、S500、S800S 440/500 - 1~125

塑壳断路器T系列 500/750 800/

1 000 160~800

框架断路器E系列 不适用直流 不适用

直流 -

(4)配电线路的金属消耗

通信机房采用不同的电压等级,对于铜材的消耗也不相同,其初始投资也有所不同。交流供电一般采用三相四线制,直流供电采用单相两线制。相同电缆截面,相同电缆数(4根),相同电流情况下的输送功率比如式(3)所示(cos为功率因数,可取):

(3)

输送相同的功率,直流电压值越高则耗铜量越少。当直流供电电压高于时,电缆耗铜量比交流380V供电少。因此IDC机房若采用高于供电电压等级的直流供电系统(综合了转换器的功耗),就能达到降低初始投资成本,提高经济效益和节能的目的。

采用不同电压等级的直流供电系统,其长期运行的线路损耗不同。从长期运行角度比较交流与直流运行的经济性,选择恰当的直流电压等级,现对交、直流输送功率的通用公式进行分析(cos值取):

直流电压为是交直流线损的平衡点,线损与电压的平方成反比。(综合相关转换器效率,常把作为平衡点)

(5)与蓄电池的匹配

目前,普遍应用的蓄电池为铅酸蓄电池,单只电压为2V、6V或12V。蓄电池作为后备电源,在高压直流供电系统故障、维护或停电时,为系统提供不间断电源。因而,高压直流供电系统的电压应与蓄电池电压相匹配。系统可以采用2V、6V或12V电池,因而高压直流供电系统的标称电压应为2V、6V和12V的整数倍。

(6)安全性

由交流输入供电改成直流输入供电,其基本整流电路“桥式整流”,如图8所示。将原来的交流UPS供电时整流管1、3和2、4轮流导通,变成2和4单边导通,原来2只整流管同时工作的模块,改成单管长时间工作。安全问题一直是人们担心的,对安全性将从下面2个方面来进行分析。

电流计算

IT设备二次电源基本上是一个恒功率设备。当服务器220V交流供电时,它的等效直流是200V,如果给服务器直接输入直流336V,相当于电压提高了70%,则工作电流相应下降70%,输入高压直流时流经整流管的电流,小于输入220V交流时流经整流管的电流。

发热量对比

发热量Q=I2*R*T,当通过整流管的电流一定时,其发热量与电阻成正比,二极管的伏安特性曲线如图9所示。由图9可知:在二极管截止区,该区域为高阻区,由于电流为0,它的作用忽略不计;在二极管饱和区,该区域为低阻区,等效电阻极小,对二极管发热影响较小;在线性区,呈现一个较大的非线性电阻,是二极管发热的主要根源。在交流输入供电时,单个整流管每秒钟要经过100次线性区,而直流输入供电时,二极管工作不经过线性区,始终工作在饱和区,所以整流管等效电阻R,在直流输入状态下比交流输入状态下小。

图9 二极管伏安特性

通过上述2点我们得出结论:长时间单管直流供电的工作电流小、发热小,是安全的。

从以上6点的分析来看,高压直流供电系统的电压设置越高越有利,但是工作最高电压不宜超过400V,通过计算,高压直流供电系统的电压设置应为:

标称电压:336V;

浮充电压:~(~/cell);

最高均充电压:~(~/cell);

蓄电池只数:2V电池168只串联或12V电池28只串联。

4 高压直流在国内外的应用

国际研究和应用

Intel EC最早就对数据中心采用的新型供电进行了研究与应用,法国电信和阿尔卡持公司相继于1999年提出《供电给新的电信网络和服务用的新的供电系统》,2000年又发表了《电信和数据通信融合的整流型AC供电技术的新研究》,并在2001年发表《新电信网络和服务的最佳新型供电》。欧美绝大部分通信运营商采用300~400V直流电压方案;法国电信公司、日本NTT电信公司试用380V高压直流供电系统;美国Intel、Microsoft、Facebook等公司试用400V高压直流供电系统;瑞士在建第一个完全采用336V直流供电的MW级数据中心,为商用数据中心。

已的技术标准

在国际上,2012年2月欧洲标准《接入400V直流源的电源输入接口》已正式;2012年5月国际电信联盟(ITU-T)标准《Direct current power feeding interface up to 400 V at the input to telecommunication and ICT equipment》已正式。

在国内,国家标准《通信高压直流电源系统工程设计规范》已完成了征求意见稿,即将正式;行业标准《YD/T 2378-2011通信用240V直流供电系统》也已下发;中国移动企业标准《336V开关型整流器》(QB-H-007-2012)、《336V直流电源系统》(QB-H-008-2012)已正式;中国电信已制定240V高压直流的企业标准。

国内高压直流进展情况

(1)中国电信使用情况

中国电信的240V直流系统如图10所示。

中国电信于2007年开始对240V高压直流供电系统进行研究与试用,2008年开始在江苏盐城试验标称电压为240V的直流供电系统,采用270V直流电为交流服务器供电。大部分交流服务器可以采用标称240V直流供电系统供电,部分服务器机架须作相应调整。试验效果比较好,节能效果很明显。

目前电信全国在网的240V直流电源系统已达到300多套并分布于20多个省、直辖市;同时计划在内蒙古新建计算信息园数据中心,共6栋楼,由电信、腾讯、百度等入驻,招标要求设备厂家兼容240V系统供电。

(2)中国联通使用情况

中国联通于2009年,在山东淄博将IDC机房UPS交流供电改造为高压直流供电,此工程是联通第一个高压直流电源工程,采用240V系统。然后于2010年在河南进行高压直流电源试点;2012年在深圳,由省公司牵头进行技术交流、方案设计,进行高压直流试点应用。

(3)国内非运营商使用情况

国内非运营商企业阿里巴巴,率先采用240V直流供电,并在IT机架内安装270V转12V嵌入式电源为服务器设备供电。南京日博、江苏广电、腾讯、润迅(深圳)等都已采用240V供电技术,百度等也将试用。

336V在中国移动的进展

中国移动的336V直流系统如图11所示。

(1)使用情况

中国移动于2009年开始进行高压直流研究和试点,试点地点选择在深圳罗湖邮政楼。经过测试,性能指标达到设计要求,运行稳定,节能效果明显。接着于2011年开始在内蒙古、辽宁等省开始实施运行。2012年仓储式机房与336V直流供电系统结合磷酸铁锂电池进行试验,服务器采用336V/12V嵌入式电源供电。

(2)技术标准和规范

目前中国移动已颁布的技术标准和规范有《336V直流供电系统》、《336V开关型整流器》和《336V直流供电系统设计规范》。国家标准《通信高压直流电源系统工程设计规范》即将颁布。

5 结束语

通信用高压直流供电系统是一种新型的供电方式,是使用与维护人员信赖的电源种类,通信电源是通信负载的能源供应源泉,是通信设备的“心脏”,其重要程度不言而喻。作为通信电源系统,我们始终认为系统安全稳定可靠的运行才是最重要的;其次才是节能环保问题。高压直流系统的高可靠性才是推动其广泛应用的前提条件,由于其运行效率也比现有交流系统高出至少20%,所以必然会受到业界欢迎,同时这也是实现节能降耗的有效手段之一。

高压直流供电系统的通信行业标准和技术规范的颁布与实施,必将推动通信用高压直流系统的研发与生产,促进其在我国通信领域的应用,也为用户的正确使用、合理维护奠定了基础。通过全文的分析,可以看到高压直流供电有着明显的优势,尤其是在高效和安全这2方面的优势更为突出。随着数据通信与网络通信的高速发展,通信负载对电源系统的要求也越来越高,通信电源系统安全可靠稳定的运行是重中之重。高压直流供电以其高可靠性,超低运营成本的优势将在未来通信领域得到更广泛的运用。

参考文献:

[1] 梁延贵。 现代集成电路实用手册[M]. 北京: 科学技术文献出版社, 2002.

[2] 王吉信,田得露。 20kV/2kW模块化高压电源研制[A]. 全国电源技术年会论文集[C]. 2005: 840-841.

[3] T L Baldwin, T. Hogans jr, S D Henry, et al. Reactive-power compensation for voltage control at resistance welders[J]. IEEE Transactions on Industry Applications, 2005,41(6): 1485-1492.

[4] 韩民晓,文俊,徐永海。 高压直流输电原理与运行[M]. 北京: 机械工业出版社, 2009.

[5] GOLE A M, MEISINGSET M. An AC Active Filter for Use at Capacitor Commutated HVDC Converters[J]. IEEE Trans On Power Delivery, 2001,16(2): 100-105.

[6] 李普明,徐政,黄莹,等。 高压直流输电交流滤波器参数的计算[J]. 中国电机工程学报, 2008,28(16): 115-121.

48 2419386
");