execl常用的微函数系列精编3篇
【导言】此例“execl常用的微函数系列精编3篇”的范文资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!
面积法1
多项选择题是提供条件和结论的问题,需要基于某种关系的正确。选择题设计精巧,形式灵活,可以全面检验学生的基本知识和技能,从而提高考试的能力和知识的覆盖面。
读书破万卷,下笔如有神。上面这3篇execl常用的微函数系列就是山草香为您整理的函数范文模板,希望可以给予您一定的参考价值。
因式分解法2
换元法是数学中非常重要且广泛使用的方法。我们通常将未知或变量称为元素。所谓的替换方法是用新变量替换原始公式的一部分,或者在相对复杂的数学公式中修改原始公式,以简化它并使问题易于解决。
高一数学函数的知识点总结3
一:函数及其表示
知识点详解文档包含函数的概念、映射、函数关系的判断原则、函数区间、函数的三要素、函数的定义域、求具体或抽象数值的函数值、求函数值域、函数的表示方法等
1. 函数与映射的区别:
2. 求函数定义域
常见的用解析式表示的函数f(x)的定义域可以归纳如下:
①当f(x)为整式时,函数的定义域为R.
②当f(x)为分式时,函数的定义域为使分式分母不为零的实数集合。
③当f(x)为偶次根式时,函数的定义域是使被开方数不小于0的实数集合。
④当f(x)为对数式时,函数的定义域是使真数为正、底数为正且不为1的实数集合。
⑤如果f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合,即求各 部分有意义的实数集合的交集。
⑥复合函数的定义域是复合的各基本的函数定义域的交集。
⑦对于由实际问题的背景确定的函数,其定义域除上述外,还要受实际问题的制约。
3. 求函数值域
(1)、观察法:通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域;
(2)、配方法;如果一个函数是二次函数或者经过换元可以写成二次函数的形式,那么将这个函数的右边配方,通过自变量的范围可以求出该函数的值域;
(3)、判别式法:
(4)、数形结合法;通过观察函数的图象,运用数形结合的方法得到函数的值域;
(5)、换元法;以新变量代替函数式中的某些量,使函数转化为以新变量为自变量的函数形式,进而求出值域;
(6)、利用函数的单调性;如果函数在给出的定义域区间上是严格单调的,那么就可以利用端点的函数值来求出值域;
(7)、利用基本不等式:对于一些特殊的分式函数、高于二次的函数可以利用重要不等式求出函数的值域;
(8)、最值法:对于闭区间[a,b]上的连续函数y=f(x),可求出y=f(x)在区间[a,b]内的极值,并与边界值f(a).f(b)作比较,求出函数的最值,可得到函数y的值域;
(9)、反函数法:如果函数在其定义域内存在反函数,那么求函数的值域可以转化为求反函数的定义域。