高二数学教学计划(最新4篇)

网友 分享 时间:

【请您参阅】下面供您参考的“高二数学教学计划(最新4篇)”是由阿拉网友精心整理分享的,供您阅读参考之用,希望此例范文对您有所帮助,喜欢就复制下载支持一下小编了!

高二数学教学计划【第一篇】

大文斗范文网后面为你推荐更多高二数学教学计划!

一、科研计划细则

1.做好备课组教研工作计划,包括:课题研究,培养青年教师方案,发挥骨干教师作用,召开教师外出学习汇报交流研讨会,撰写论文,开发小本课程,有效教学方面的内容。

2.教研活动做好记录,记在《教研会议记录》本上。

3.正规作业每学期20次,认真批改,注明日期及等级。

4.外出培训学习的教师要在备课组里进行汇报和学习心得交流,并请级部主任和科研处主任参加。回校两周内把学习

心得体会

文字材料交到科研处存档。

5.抓好听评课

互相听课,取长补短,认真评课。做到“一课三摩”,多听、多看、多说、多练、多提建议、多加改进,努力提高自己的授课水平。青年教师一学期听评课70节,普通教师一学期听评课50节,要写好评课记录与心得,评课记录要有对具体内容和具体问题的看法、观点,不能泛泛而谈。

6.业务笔记

每学期5000字,本学期主要学习《课堂观察》和《有效教学试讲》两本书,写好学习笔记和学习心得。

7.鼓励教师多写有效教学方面的论文、案例、教学设计,每周二前发到科研处邮箱,由学校统一往威海教育网上发送。发送的论文、案例、教学设计等要求以word格式存盘,发送主题,统一写“有效教学 作者名”,严谨抄袭。

二、教学计划细则

1.加强集体备课

本学期集体备课安排在周三节,每单元固定主讲人,采用说课的方式,具体讲解教材的处理、习题的处理,经过讨论最后确定大家共同认可的方案。习题的配备分工到小组,专人出题,专人审核。

除此之外,还要利用在同一个办公室之便,做到每节、每天相互交流,集体磋商,共同探讨。所教内容的重点、难点、采用的教学方式,电教手段、能力的培养,作业题、例题、习题的选择以及测试题等方面的统一布置。

2.导学案的斟酌

根据上学期的经验和数学学科的特点,不是每节课都适合用导学案,如“瞬时速度与导数”,“曲边梯形面积定积分“等大量用到高等数学符号的内容比较晦涩难懂的内容,就应该采用传统的教授式的教学模式。另外,不同可行的导学案方式也应该有所区别,具体的安排全组讨论决定。

3.作业设置

根据实际情况分层布置,适量、适度、有针对性。作业要求全批全改,批改要规范,有鼓励性的评价,

总结

学生易出现的错误,探究错误根源。讲解作业做到有的放矢。每周一次周末测试,题型按高考模式出现(共22题),内容以本周所学内容为主,附含前面的部分内容,防止学生遗忘。

4.抓好落实

抓落实包括学生对新知识的理解与接受,练习题、作业题、小测试、错题本等的检查与批改,每节新授课后,进行课堂反馈,每章测试一次,每周批改一次错题本。

总之,备课组教师应团结一心,相互协作,多干实事,在“落实”二字上下足功夫,向“落实”要质量,向“落实”要成绩,为使提高高二学生的数学成绩而努力奋斗.5.会考复习

从5月1日开始,着手准备会考的复习。日,每周末做一份会考模拟题,6月1日开始,用2周时间细化复习,争取提高会考通过率。

三、有效课堂计划

有效教学不注重形式,不以是否用导学案或是否分组教学来判断课堂教学是否有效,而是只要能让学生在最短的时间汲取最多的知识,让学生真正动脑、动笔,就是有效的课堂。

1.以问题引导,让学生真正进入课堂。

通过对问题的研究、探讨,引发学生对数学的兴趣,感知数学的魅力,培养学生分析、解决问题的能力。问题的具体设置可在集体备课中进行探讨,但要体现教师的个人特色。

2.改造例题

针对高中生喜欢新鲜的特点,有目的、有创造性地改造课本上的例题。重新设计教学内容,教学环境,压缩新授课时间,把重心放在学生独立解决不了的问题上,把时间放在巩固性训练上,注意各版本教材的比较研究。

3.每日一题

本栏目是在保证教学目标能够完成的前提下设置的,全部由学生操作。由学生轮流自主选题,每天一道,课前5分钟负责给全班同学讲解,教师最后点评。这样可以帮助学生巩固前面的知识,训练学生语言表达能力,鼓励学生敢于发表自己的观点,为有效课堂的实行打好基础。

四、课时安排

本学期共19周,需要学习选修2-2和选修2-3两本书,另外还要准备会考的复习工作。

具体安排:

第1---3周()选修2-2第一章 导数及其应用

第4---5周()选修2-2第二章 推理与证明

第6周()选修2-2第三章 数系的扩充与复数

第7周()复习选修2-2

第8---9周()选修2-3第一章 计数原理

第10---12周()选修2-3第二章 概率

第13周()选修2-3第三章 统计案例

第14周以后 复习

高二数学教学计划【第二篇】

一、指导思想

主动而不是被动的进行高中新课程标准改革,认真解读新课程标准的理念;研究高中新课程标准的实验与高考衔接的问题;把学生的接受性、被动学习转变成主动性、研究性学习;使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下。

1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。

2.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

3.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。

4.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

5.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。

二.工作目标

备课组长在教研组长的领导下,负责年级备课和教学研究工作,努力提高本年级学科的教学质量。

1.全组成员精诚团结,互相关心,互相支持,弘扬一种同志加兄弟的同仁关系,力争使我们数学组成为一个充满活力的优秀集体。

2.不拘形式不拘时间地点的加强交流,互相之间取长补短,与时俱进,教学相长。

3.在日常工作当中,既保持和优化个人特色,又实现资源共享,同类班级的相关工作做到基本统一。

4.抓好本年级活动课和研究性学习课的教学,有针对性培养学有余力,学有特长的学生,并做好后进生的转化工作,真正做到大面积提高教育质量。

三.主要措施

1.以老师的精心备课与充满激情的教学,换取学生学习高效率。

2.将学校和教研组安排的有关工作落到实处。

3.落实培辅工作,为高三铺路!教育要从娃娃抓起,那么对难于上青天的教学我们应当从今天抓起。

四.活动设想

1.按时完成学校(教导处,教研组)相关工作。

2.共同研究,共同探讨,备课组为新教材每章节配套单元测试卷两套。

3.每周集体备课一次,每次有中心发言人,组织进行教学研讨以便分章节搞好集体备课。

4.互相听课,以人之长,补己之短,完善自我。

5.认真组织好培优辅差工作。

6.做好学科段考、模块的复习、出题、考试、评卷、成绩统计和质量分析评价工作.7.积极组织全组成员探索教材特点、积极思考教法分析、认真分析学情以便根据不同的情况实施有效的教学策略.五.教学内容与要求

选修2-2

1.导数及其应用(约24课时)

(1)导数概念及其几何意义

① 通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵(参见选修1-1案例中的例2、例3)。

②通过函数图像直观地理解导数的几何意义。

(2)导数的运算

① 能根据导数定义求函数y=c,y=x,y=x2,y=x3,y=1/x, y=x 的导数。

② 能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f(ax+b))的导数。

③ 会使用导数公式表。

(3)导数在研究函数中的应用

① 结合实例,借助几何直观探索并了解函数的单调性与导数的关系(参见选修1-1案例中的例4);能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间。

② 结合函数的图像,了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三次的多项式函数的极大值、极小值,以及闭区间上不超过三次的多项式函数最大值、最小值;体会导数方法在研究函数性质中的一般性和有效性。

(4)生活中的优化问题举例。

例如,使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用。(参见选修1-1案例中的例5)

(5)定积分与微积分基本定理

① 通过实例(如求曲边梯形的面积、变力做功等),从问题情境中了解定积分的实际背景;借助几何直观体会定积分的基本思想,初步了解定积分的概念。

② 通过实例(如变速运动物体在某段时间内的速度与路程的.关系),直观了解微积分基本定理的含义。(参见例1)

(6)数学文化

收集有关微积分创立的时代背景和有关人物的资料,并进行交流;体会微积分的建立在人类文化发展中的意义和价值。具体要求见本《标准》中数学文化的要求。(参见第91页)

2.推理与证明(约8课时)

(1)合情推理与演绎推理

①结合已学过的数学实例和生活中的实例,了解合情推理的含义,能利用归纳和类比等进行简单的推理,体会并认识合情推理在数学发现中的作用(参见选修2-2中的例2、例3)。

②结合已学过的数学实例和生活中的实例,体会演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理。

③通过具体实例,了解合情推理和演绎推理之间的联系和差异。

(2)直接证明与间接证明

①结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点。

②结合已经学过的数学实例,了解间接证明的一种基本方法--反证法;了解反证法的思考过程、特点。

(3)数学归纳法

了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题。

(4)数学文化

①通过对实例的介绍(如欧几里德《几何原本》、马克思《资本论》、杰弗逊《独立宣言》、牛顿三定律),体会公理化思想。

②介绍计算机在自动推理领域和数学证明中的作用。

高二数学教学计划【第三篇】

一、学情分析

11电子(1),现共50人,均为男生,在去年的一年中的学习表现中,有些同学在课堂上也能积极思考,积极发言,课后也能主动地完成课外的知识积累,有两位同学参加县里数学竞赛都荣获二等奖。但还有好多的同学学习目标仍不明确,在学校生活就是混日子,上课不认真听课,作业不独立完成,课后再也没时间放在学习上,因此,这一些同学的成绩就可想而知了。

二、教材分析

本学期根据教学大纲的编排,主要内容包括第八章直线和圆的方程,第九章立体几何和第十章概率与统计初步。具体内容:第八章有坐标系中的基本公式,直线的方程,圆的方程,直线与圆的位置关系,本章内容主要就是用代数的知识阐述几何图形的问题。第九章的内容分空间中平面的基本性质,空间中的平行关系,空间中的垂直和角,多面体和旋转体。教材首先让学生从直观上认识空间几何体和轨迹,然后给出了平面的三条基本性质,从而把平面上的平行关系推广到空间。学习立体几何除了培养学生的空间想象能力外,还培养学生逻辑思维能力。第十章有计数的两个原理,概率初步,统计初步及随机抽样的三种基本方法。本章教学中要激发并培养学生的学习兴趣地,增强学生的社会实践能力,培养学生解决实际问题的能力。

三、教学目标

解析几何:掌握平面直角坐标系内两点之间的距离公式和中点公式;理解直线的方程和圆 的方程的含义,方程求两曲线的交点;理解直线的倾斜角和斜率,会根据已知条件,求直线的斜率和倾斜角;掌握直线的点斜式方程和斜截式方程;理解直线在y轴上的截距理解直线与二元一次方程的关系,掌握直线 的一般式言行中,了角直线 的方向向量和法向量; 理解两直线平等行与垂直的条件,会求点到直线的距离;掌握圆 的标准方程和一般方程,理解直线与圆的位置关系; 能利用直线和圆的方程解决简单的问题。

立体几何:能正确地画出有关被单图形的示意图,能由空间图形的示意图想象出空间图形 ;会用斜二侧画法画水平放置的正三角形、正方形、正六边形等平面图形的直观图和正方体、长方体等立体图形的直观图;理解空间点、直线、平面之间的各种位置关系;掌握平面的基本性质,空间直线与直线、直线与平面、平面与平面的平行与垂直的性质与判定;理解空间中的角;掌握简单多面体的有关概念、结构特征与性质;掌握直棱柱、正棱锥、圆柱和圆锥的侧面积及表面积计算公式。

概率与统计初步:掌握分类计数和分步计数原理,会用这两个原理解决一些简单问题;了解随机现象、随机试验的概念;理解古典概率的性质,会用古典概率解决一些简单的实际问题。理解概率的统计定义;结合具体的实际问题情景,了解随机抽样 的必要性和重要性。学会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法;会计算样本方差和标准差;能根据实际问题的需求合理地选取样本,从样本数据中提取基本的数字特征,会用样本估计总体的思想,会用样本的基本数字特征估计总体的基本数字特征;会用样本的频率分布估计总体分布。

四、教学措施

从学生的实际情况入手,从其周边的生活入手,分解新知识,降低接受知识的难度,增强学生学习数学的信心,组建学习小组,以传帮带的形式实行共同进步

高二数学教学计划【第四篇】

本章是高考命题的主体内容之一,应切实进行全面、深入地复习,并在此基础上,突出解决下述几个问题:(1)等差、等比数列的证明须用定义证明,值得注意的是,若给出一个数列的前 项和,则其通项为 若 满足 则通项公式可写成.(2)数列计算是本章的中心内容,利用等差数列和等比数列的通项公式、前 项和公式及其性质熟练地进行计算,是高考命题重点考查的内容.(3)解答有关数列问题时,经常要运用各种数学思想.善于使用各种数学思想解答数列题,是我们复习应达到的目标.①函数思想:等差等比数列的通项公式求和公式都可以看作是 的函数,所以等差等比数列的某些问题可以化为函数问题求解.②分类讨论思想:用等比数列求和公式应分为 及 ;已知 求 时,也要进行分类;

③整体思想:在解数列问题时,应注意摆脱呆板使用公式求解的思维定势,运用整

体思想求解.(4)在解答有关的数列应用题时,要认真地进行分析,将实际问题抽象化,转化为数学问题,再利用有关数列知识和方法来解决.解答此类应用题是数学能力的综合运用,决不是简单地模仿和套用所能完成的.特别注意与年份有关的等比数列的第几项不要弄错.一、基本概念:

1、数列的定义及表示方法:

2、数列的项与项数:

3、有穷数列与无穷数列:

4、递增(减)、摆动、循环数列:

5、数列的通项公式an:

6、数列的前n项和公式sn:

7、等差数列、公差d、等差数列的结构:

8、等比数列、公比q、等比数列的结构:

二、基本公式:

9、一般数列的通项an与前n项和sn的关系:an=

10、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d(其中a1为首项、ak为已知的第k项)当d0时,an是关于n的一次式;当d=0时,an是一个常数。

11、等差数列的前n项和公式:sn= sn= sn=

当d0时,sn是关于n的二次式且常数项为0;当d=0时(a10),sn=na1是关于n的正比例式。

12、等比数列的通项公式: an= a1 qn-1 an= ak qn-k

(其中a1为首项、ak为已知的第k项,an0)

13、等比数列的前n项和公式:当q=1时,sn=n a1(是关于n的正比例式);

当q1时,sn= sn=

三、

有关等差、等比数列的结论

14、等差数列的任意连续m项的和构成的数列sm、s2m-sm、s3m-s2m、s4m-s3m、仍为等差数列。

15、等差数列中,若m+n=p+q,则

16、等比数列中,若m+n=p+q,则

17、等比数列的任意连续m项的和构成的数列sm、s2m-sm、s3m-s2m、s4m-s3m、仍为等比数列。

18、两个等差数列与的和差的数列、仍为等差数列。

19、两个等比数列与的积、商、倒数组成的数列、、仍为等比数列。

20、等差数列的任意等距离的项构成的数列仍为等差数列。

21、等比数列的任意等距离的项构成的数列仍为等比数列。

22、三个数成等差的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,a+d,a+3d23、三个数成等比的设法:a/q,a,aq;

四个数成等比的错误设法:a/q3,a/q,aq,aq324、为等差数列,则(c0)是等比数列。

25、(bn0)是等比数列,则(c0且c 1)是等差数列。

四、数列求和的常用方法:公式法、裂项相消法、错位相减法、倒序相加法等。关键是找数列的通项结构。

26、分组法求数列的和:如an=2n+3n27、错位相减法求和:如an=(2n-1)2n28、裂项法求和:如an=1/n(n+1)

29、倒序相加法求和:

30、求数列的最大、最小项的方法:

① an+1-an= 如an=-2n2+29n-3

② an=f(n)研究函数f(n)的增减性

31、在等差数列 中,有关sn 的最值问题常用邻项变号法求解:

(1)当 0时,满足 的项数m使得 取最大值.(2)当 0时,满足 的项数m使得 取最小值。

在解含绝对值的数列最值问题时,注意转化思想的应用。

以上就是高二数学学习:高二数学数列的所有内容,希望对大家有所帮助!

48 1815295
");