2023年考研数学一 概率论样例

网友 分享 时间:

【导读预览】此篇优秀范文“2023年考研数学一 概率论样例”由阿拉题库网友为您整理分享,以供您参考学习之用,希望此篇资料对您有所帮助,喜欢就复制下载支持吧!

考研数学一 概率论篇1

2018年考研数学大纲原文汇总

2018考研英语一大纲图片版

2018年考研英语二大纲原文已公布

2018考研政治大纲已公布

2018年考研政治大纲解析:变与不变

2018考研大纲原文汇总

考研数学一 概率论篇2

概率论与数理统计

一、随机事件和概率

考试内容

随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率 几何型概率条件概率概率的基本公式事件的独立性独立重复试验

考试要求

1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.

2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌 握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(bayes)公式.

3.理解事件独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握 计算有关事件概率的方法.

二、随机变量及其分布

考试内容

随机变量随机变量分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的 概率密度常见随机变量的分布随机变量函数的分布

考试要求

5.会求随机变量函数的分布.

三、多维随机变量及其分布

考试内容

多维随机变量及其分布二维离散型随机变量的概率分布、边缘分布和条件分布二维连续型随 机变量的概率密度、边缘概率密度和条件密度随机变量的独立性和不相关性常用二维随机变 量的分布两个及两个以上随机变量简单函数的分布

考试要求

1.理解多维随机变量的概念,理解多维随机变量的分布的概念和性质,理解二维离散型随机 变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和 条件密度,会求与二维随机变量相关事件的概率.

2.理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件.

4.会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布.

四、随机变量的数字特征

考试内容

随机变量的数学期望(均值)、方差、标准差及其性质随机变量函数的数学期望矩、协方差、 相关系数及其性质

考试要求

1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运 用数字特征的基本性质,并掌握常用分布的数字特征.

2.会求随机变量函数的数学期望.

五、大数定律和中心极限定理

考试内容

切比雪夫(chebyshev)不等式切比雪夫大数定律伯努利(bernoulli)大数定律辛钦(khinchine)大 数定律棣莫弗-拉普拉斯(demoivre-laplace)定理列维-林德伯格(levy-lindberg)定理 考试要求

1.了解切比雪夫不等式.

2.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大 数定律).

3.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同 分布随机变量序列的中心极限定理).

六、数理统计的基本概念

考试内容

七、参数估计

考试内容

点估计的概念估计量与估计值矩估计法最大似然估计法估计量的评选标准区间估计的概念 单个正态总体的均值和方差的区间估计两个正态总体的均值差和方差比的区间估计 考试要求

1.理解参数的点估计、估计量与估计值的概念.

2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.

3.了解估计量的无偏性、有效性(最小方差性)和一致性(相合性)的概念,并会验证估计量的 无偏性.

4、理解区间估计的概念,会求单个正态总体的均值和方差的置信区间,会求两个正态总体 的均值差和方差比的置信区间.

八、假设检验

考试内容

显著性检验假设检验的两类错误单个及两个正态总体的均值和方差的假设检验 考试要求

1.理解显著性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错 误.

2.掌握单个及两个正态总体的均值和方差的假设检验.

网友精心为您推荐:

48 1324368
");