2024年大数据心得心得体会范文【最新5篇】

网友 分享 时间:

大数据心得心得体会【第一篇】

随着信息技术的快速发展,大数据已成为企业决策过程中的重要组成部分。作为全球知名的科技公司,联想在大数据方面有着丰富的经验和心得。在这篇文章中,我将探讨联想在大数据领域的心得体会,包括数据收集与分析、数据治理、数据安全等方面的实践与思考。

第一段:数据收集与分析。

在大数据时代,数据收集与分析是企业获取洞察力的关键步骤。联想认为,数据收集需要遵循准确性、全面性和及时性三个原则。通过前端设备的数据采集、用户行为分析、市场调研等途径,联想能够获取大量的原始数据,并结合大数据算法进行有效分析和挖掘。这使联想能够了解消费者需求、产品偏好等信息,从而为企业的战略决策提供支持。

第二段:数据治理。

在大数据时代,数据治理成为了企业必不可少的一部分。联想通过建立数据治理规范和流程,确保数据的质量和一致性。通过对数据的分类、标准化和集中管理,联想在数据的质量和安全方面做出了许多努力。此外,联想注重数据的价值挖掘,通过数据的共享和交换,推动企业的创新和发展。

第三段:数据安全。

在大数据时代,数据安全是企业不可忽视的重要问题。联想深知数据安全的重要性,通过建立完善的数据安全体系,保护用户的隐私和企业的商业机密。联想通过加强数据加密、权限控制和风险评估等措施,建立了多层次的数据防护系统。同时,联想也注重培养员工的安全意识和技能,提高整个企业的数据安全防御能力。

第四段:数据驱动决策。

大数据时代的到来,使得数据驱动决策成为企业管理中的重要思维方式。联想通过大数据分析为企业提供决策参考,帮助企业更加准确地判断市场趋势、分析竞争对手等。数据驱动决策不仅提高了决策的准确性和效率,还能够发现企业内部的问题,推动企业的创新和发展。

第五段:面临的挑战与未来展望。

尽管取得了一定的成就,联想也面临着大数据时代带来的挑战。首先,数据安全问题依然是一个持续的挑战。未来,联想需要不断加强数据安全防护,建立更为严密的数据安全体系。其次,数据的可信度和可解释性仍然需要进一步加强。在大数据分析和人工智能技术的发展背景下,联想需要注重提高数据的质量和可解释性,保证数据分析结果的准确性和可靠性。

总之,联想在大数据领域有着丰富的经验和心得。通过数据收集与分析、数据治理、数据安全等方面的实践与思考,联想成功地实现了数据驱动决策,并为企业的创新和发展提供了支持。然而,随着大数据时代的发展,联想面临着一系列挑战。联想将继续加强数据安全防护,提高数据的质量和可解释性,努力推动大数据技术在企业管理中的应用。

大数据心得心得体会【第二篇】

根据中国汽车流通协会公布的数据显示,在经销商销量和收入均同比增加的情况下,连续两年入围百强的84家汽车经销商毛利与相比大幅下滑至25.79%。20,汽车经销商盈利面继续缩小,据统计,48.5%的经销商盈利状况持平,只有21.8%的经销商盈利,剩余的经销商处于亏损状态。当前,汽车产品已远远超出市场能够消化的程度,库存在不断地增加,目前全国共有0多家经销商,按照当前的产销规模和经销商数量,经销商的压力可想而知。大面积的亏损,严重打击了经销商的信心,很多经销商纷纷退出汽车行业,转而寻找新的盈利机会,这种局面对于厂家来说也是无能为力,以“4s”店为主的营销渠道遇到了前所未有的危机。

二、“互联网+”时代下的渠道“短板”

一直以来,以“4s”店为主体的汽车品牌专营模式一直是汽车营销渠道的主流模式。不过随着互联网技术的发展,网络购物成为时下流行的生活方式,网络购物的商品也从小件商品延伸到了汽车产品领域。据j.d.power调查,有80%的经销商认为在线购车将成为未来趋势,并且认为这将影响到传统汽车销售业务。这样一来,传统“4s”店作为目前较大的营销渠道而言就遇到了前所未有的挑战。相比新兴互联网汽车业务来说,传统“4s”店营销模式的“短板”很突出。

(一)消费者满意度差。

“4s”店的背后是相对独立的经销商,作为经销商而言,追逐利润是第一位的。在市场火爆的情况下,会出现某款车型“加价提车”的现象,消费者甚至加价都提不到车的现象也时有发生,消费者对这种违背市场规律的行为已见怪不怪。虽心有怨言却也是无奈接受。在市场遇冷的情况下,经销商常常会以低于厂家指导价很多的促销价来博得销量,以得到厂家的年终返点,但是在这个促销价格中,包含着强制购买店内装饰和强制购买保险的捆绑销售行为,很让消费者反感。

(二)售后维修价格虚高。

“4s”店总是着眼于销售业绩,对售后服务的管理和如何提高客户满意度、怎样加强售后服务、提高技术水平的动力不足,“前店后厂”式的售后服务体系并未健全。在具体的售后服务中,由于技术水平高低不一、人员素质参差不齐、经济利益诱导等现实因素,“4s”店习惯在工时费、零配件价格上做手脚,售后维修价格虚高。这也是“4s”店遭到消费者普遍诟病的重要原因之一。

(三)运营成本过高一家。

“4s”店要达到标准化。

经营需要经历选址、征地(租地)、建店、招聘店员、培训、试运营等诸多环节,期间发生的征地或租地费用、建店工程款、各种税费、人员工资等所有费用都要摊薄到利润里面,这样一来,“4s”店的初始经营就要面临巨大的压力。小规模的“4s”店一般占地几千平方米,大规模的则达到上万平方米,每年的租地成本就要几百万元。如果土地不是租用的,“4s”店第一年购买土地的成本投入还会高出更多。一家“4s”店平均有大约100名员工,每年的人工支出通常要400万至500万元。仅就人员工资来说,对“4s”店而言就是一笔不小的负担。如果再加上其他开销,一家“4s”店的年运营成本往往接近千万元人民币。

三、“互联网+”时代下如何实现营销渠道变革。

据统计,目前全国近40家汽车经销商已签署了汽车经销商电商平台战略合作协议,依托现有的经销商线下渠道与线上资源相结合运营,40家经销商几乎涉及中国过半数经销商集团,规模可覆盖全国成千上万家汽车“4s”店及上亿汽车用户。同时,二手车业务以及汽车租赁业务的扩大,都将成为经销商利润提升的主要途径。在这种趋势下,传统“4s”店必须要做出变革。

(一)提升自身竞争力。

商务部于1月发布了《汽车销售管理办法(征求意见稿)》,并将在今年内正式实施。新《办法》鼓励汽车销售模式多样化。新《办法》明确提到推动汽车流通模式创新,积极发展电子商务。这意味着“4s”店模式作为唯一授权销售渠道的时代彻底结束,新兴销售渠道和传统销售体系的共生融合成为趋势。在这种情况下,“4s”店一方面要做好接受市场的冲击,不能再固步自封,必须提升服务水平,注重差异化服务,降低运营成本,从自身挖掘盈利点,另一方面,要及时跟上市场步伐,要提高对市场的信息灵敏度,在实体店的基础上大力发展互联网业务。只有逐步提高自身竞争力,才能在互联网时代下生存。

(二)注重“线上线下”业务融合。

对于未来的互联网汽车营销,将不再是“4s”店来全部承担满足客户需求的重任,配套的有大量的城市展厅、体验中心甚至提供定制化服务的互联网平台。我们要建立一个在线上有智能终端,在线下以“4s”店为载体,能够实现线上和线下服务一体化的互联网销售体系,让用户能够在线上和线下之间自由选择。最终呈现给客户的是以汽车消费为主的“一站式”服务体验场景。汽车销售渠道的互联网化,一开始就是一个整体性的变化,不仅仅是新车、二手车,还包括后汽车市场,都在互联网化。未来有可能汽车电商和线下营销渠道是平行的,来让用户选择。目前来说,消费者最担心的是线上产品的质量和线下服务的承接能力,这就涉及到线上线下业务的融合。可以说,只有实现线上营销与实体经济的深度业务融合,汽车营销渠道“互联网+”的时代才算真正来临。

(三)重点打造智能终端app软件。

目前来看,在国内只有两种app营销方式,一是利用现有社交媒体app,比如微信、qq等,另一种是自己开发app。利用现有的社交媒体app的好处是能够迅速将营销内容推广给客户,传播效率高;缺点是目标客户群不明确,客户体验感差,缺乏互动。而企业自己开发的app的优势是能够独立掌控app资源,拥有自主运营权,内容灵活,客户体验感强;缺点是开发成本高,推广率低,下载安装注册认证程序繁琐,一般需要从企业官方的网站下载,而且无附加功能,客户粘性差。如果我们将社交媒体app和企业自己开发的app的优点相结合,打造基于社交媒体app的,这样一来用户的体验感更强,互动效果更好,客户粘度会更高。

四、结语。

互联网正悄悄改变着人们的消费习惯。在汽车消费领域,用户对整车电商的接受程度也变得越来越高。据尼尔森近期数据显示,有92%的客户在购买汽车时,都希望通过互联网来了解产品及相关信息。该机构数据显示,在中国,有86%的客户愿意通过互联网来购买汽车。互联网已经成为用户获取信息的重要渠道和购买终端。与以往不同,如今的消费者对决定购买的车型已越来越熟悉,汽车销售顾问已不用费劲介绍车型信息。此外,消费者在购车之前都会在汽车网站上对各款车的配置、优缺点、和各地区的成交价格进行反复对比。现阶段,越来越多的企业已开展了对互联网汽车业务的探索,无论是汽车企业、综合类传统电商还是汽车媒体,都纷纷开始布局汽车电商平台。总之,对于传统的汽车经销商而言,互联网时代危险与机遇并存。现阶段传统“4s”店只有加快用互联网的思维武装自己、改造自己,才能在互联网时代的渠道竞争中立于不败之地,真正成为“渠道之王”。

大数据心得心得体会【第三篇】

随着移动互联网的快速发展,短视频平台逐渐流行起来。作为其中的佼佼者,抖音凭借其独特的内容和精准的推送机制吸引了大量用户。作为一名抖音用户,我不仅通过观看短视频获得娱乐,也亲身体验了抖音大数据给我带来的便利。在这篇文章中,我将分享自己的心得体会,探讨抖音大数据的影响和启示。

首先,抖音大数据让我实现了个性化推送。抖音通过分析我的浏览记录、点赞行为和关注领域,精确捕捉到我的兴趣爱好。每当我打开抖音时,推送给我的短视频都是与我兴趣相关的。这让我能够迅速找到我喜欢的内容,并且提供了更多的发现机会。通过个性化推送,抖音大数据不仅提高了我的使用体验,也带给我新的惊喜和启示。

其次,抖音大数据也让我认识到了全球文化的多样性。抖音作为一个全球化的平台,聚集了来自世界各地的用户和内容创作者。通过浏览和关注不同地区的短视频,我得以了解和体验到各种不同的文化形式和生活方式。抖音的大数据分析技术帮助我突破地域限制,让我能够在家中就能体验到全球的多样性。这种跨文化的交流和认知拓宽了我的视野,让我更加开放和包容。

同时,抖音大数据也对我产生了商业上的影响。在使用抖音的过程中,我经常看到明星和网红们为各种品牌代言的广告。这些广告的选择不是随机的,而是基于抖音大数据分析得出的用户画像进行精确定位的结果。通过对用户画像的准确把握,抖音能够将合适的广告推送给特定的目标用户,提高广告的点击率和转化率。这种精准的商业营销模式不仅使品牌商获得更大的曝光度和销售机会,也让用户能够看到自己更感兴趣的广告内容。

此外,抖音大数据还对我个人生活产生了积极的影响。通过观看抖音的短视频,我可以接触到很多有趣和有益的内容,如健身、烹饪和音乐教学等。这些内容不仅为我的业余生活增添了乐趣,也丰富了我的知识和技能。抖音大数据通过分析我的兴趣和需求,为我推荐了有益于个人成长和发展的内容,激发了我的学习兴趣和动力。

综上所述,抖音大数据在个性化推送、文化交流、商业营销和个人生活方面对我产生了巨大的影响。通过对用户兴趣和行为的分析,抖音能够提供个性化的服务和体验,让我在短视频的世界中找到属于自己的快乐。抖音大数据也让我感受到全球文化的多样性,并且为商业发展和个人成长带来了巨大的机遇。随着抖音的不断发展,我相信抖音大数据的应用将会越来越广泛,给更多用户带来更多惊喜和启示。

大数据心得心得体会【第四篇】

利用周末,一口气读完了涂子沛的大作《大数据》。这本书很好看,行文如流水,引人入胜。书中,你读到的不是大数据技术,更多是与大数据相关的美国政治、经济、社会和文化的演进。作为一名信息化从业者,读完全书,我深刻感受到了在信息化方面中国与美国的各自特色,也看到了我们与美国的差距。有几个方面的体会,但窥一斑基本能见全貌。

一是政府业务数据库公开的广度和深度。近年来,随着我国信息公开工作的推进,各级政府都在通过政府门户网站建设积极推进网上政务信息公开,但我们的信息公开,现阶段还主要是政府的政策、法律法规、标准、公文通告、工作职责、办事指南、工作动态、人事任免等行政事务性信息的公开。当然,实时的政府业务数据库公开也已经取得很大进步。在中国政府门户网,可以查询一些公益数据库,如国家统计局的经济统计数据、环保部数据中心提供的全国空气、水文等数据,气象总局提供的全国气象数据,民航总局提供的全国航班信息等;访问各个部委的网站,也能查到很多业务数据,如发改委的项目立项库、工商局的企业信用库、国土资源部的土地证库、国家安监总局的煤矿安全预警信息库、各类工程招标信息库等等。这是一个非常大的进步,也是这么多年电子政务建设所取得的成效和价值!但是,政务业务数据库中的很多数据目前还没有实现公开,很多数据因为部门利益和“保密”等因素,还仅限于部门内部人员使用,没有公开给公众;已经公开的数据也仅限于一部分基本信息和统计信息,更多数据还没有被公开。从《大数据》一书中记录的美国数据公开的实践来看,美国在数据公开的广度和深度都比较大。

美国人认为“用纳税人的钱分享的“2024年大数据心得心得体会范文【最新5篇】”,尽管美国政府事实上对数据的公开也有抵触,但民愿不可违,美国政府的业务数据越来越公开,尤其是在奥巴马政府签署《透明和开放的政府》文件后,开放力度更加大。是美国联盟政府新建设的统一的数据开放门户网站,网站按照原始数据、地理数据和数据应用工具来组织开放的各类数据,累积开放378529个原始和地理数据集。在中国尚没有这样的数据开放的网站。另外,由于制度的不同,美国业务信息公开的深度也很大,例如,网上公布的美国总统“白宫访客记录”公布的甚至是造访白宫的各类人员的相关信息;美国的网站,能够逐条跟踪、记录、分析联邦政府每一笔财政支出。这在中国,目前应该还没有实现。

二是对政府对业务数据的分析。目前,中国各级政府网站所提供的业务数据基本上还是数据表,部分网站能提供一些统计图,但很少能实现数据的跨部门联机分析、数据关联分析。这主要是由于以往中国政务信息化的建设还处于部门建设阶段。美国在这方面的步伐要快一些,美国的网站,不仅提供原始数据和地理数据,还提供很多数据工具,这些工具很多都是公众、公益组织和一些商业机构提供的,这些应用为数据处理、联机分析、基于社交网络的关联分析等方面提供手段。如上提供的白宫访客搜索工具,可以搜寻到访客信息,并将白宫访客与其他微博、社交网站等进行关联,提高访客的透明度。

三是关于个人数据的隐私。在美国,公民的隐私和自有不可侵犯,美国没有个人身份证,也不能建立基于个人身份证号码的个人信息的关联,建立“中央数据银行”的提案也一再被否决。这一点,在中国不是问题,每个公民有唯一的身份信息,通过身份证信息,可以获取公民的基本信息。今后,随着国家人口基础数据库等基础资源库的建设,公民的社保、医疗等其他相关信息也能方便获取,当然信息还是限于政府部门使用,但很难完全保证整合起来的这些个人信息不被泄露或者利用。

数据是信息化建设的基础,两个大国在大数据领域的互相学习和借鉴,取长补短,将推进世界进入信息时代。我欣喜地看到,美国政府20xx年启动了“大数据研发计划”,投资2亿美元,推动大数据提取、存储、分析、共享、可视化等领域的研究,并将其与超级计算和互联网投资相提并论。同年,中国政府20xx年也批复了“国家政务信息化建设工程规划”,总投资额估计在几百亿,专门有人口、法人、空间、宏观经济和文化等五大资源库的五大建设工程。开放、共享和智能的大数据的时代已经来临!

大数据心得心得体会【第五篇】

《大数据时代》这本书写的很好,很值得一读,因为会给我们很多启发,比如你在相关的社交网站发表的言论或者照片都很有可能被“数据科学家”们利用,从而再将相关数据卖给各大网店。下面是本站网友为大家收集分享的“2024年大数据心得心得体会范文【最新5篇】”,欢迎大家阅读。

利用周末,一口气读完了涂子沛的大作《大数据》。这本书很好看,行文如流水,引人入胜。书中,你读到的不是大数据技术,更多是与大数据相关的美国政治、经济、社会和文化的演进。作为一名信息化从业者,读完全书,我深刻感受到了在信息化方面中国与美国的各自特色,也看到了我们与美国的差距。有几个方面的体会,但窥一斑基本能见全貌。

一是政府业务数据库公开的广度和深度。近年来,随着我国信息公开工作的推进,各级政府都在通过政府门户网站建设积极推进网上政务信息公开,但我们的信息公开,现阶段还主要是政府的政策、法律法规、标准、公文通告、工作职责、办事指南、工作动态、人事任免等行政事务性信息的公开。当然,实时的政府业务数据库公开也已经取得很大进步。在中国政府门户网,可以查询一些公益数据库,如国家统计局的经济统计数据、环保部数据中心提供的全国空气、水文等数据,气象总局提供的全国气象数据,民航总局提供的全国航班信息等;访问各个部委的网站,也能查到很多业务数据,如发改委的项目立项库、工商局的企业信用库、国土资源部的土地证库、国家安监总局的煤矿安全预警信息库、各类工程招标信息库等等。这是一个非常大的进步,也是这么多年电子政务建设所取得的成效和价值!但是,政务业务数据库中的很多数据目前还没有实现公开,很多数据因为部门利益和“保密”等因素,还仅限于部门内部人员使用,没有公开给公众;已经公开的数据也仅限于一部分基本信息和统计信息,更多数据还没有被公开。从《大数据》一书中记录的美国数据公开的实践来看,美国在数据公开的广度和深度都比较大。美国人认为“用纳税人的钱分享的“2024年大数据心得心得体会范文【最新5篇】”,尽管美国政府事实上对数据的公开也有抵触,但民愿不可违,美国政府的业务数据越来越公开,尤其是在奥巴马政府签署《透明和开放的政府》文件后,开放力度更加大。是美国联盟政府新建设的统一的数据开放门户网站,网站按照原始数据、地理数据和数据应用工具来组织开放的各类数据,累积开放378529个原始和地理数据集。在中国尚没有这样的数据开放的网站。另外,由于制度的不同,美国业务信息公开的深度也很大,例如,网上公布的美国总统“白宫访客记录”公布的甚至是造访白宫的各类人员的相关信息;美国的网站,能够逐条跟踪、记录、分析联邦政府每一笔财政支出。这在中国,目前应该还没有实现。

二是对政府对业务数据的分析。目前,中国各级政府网站所提供的业务数据基本上还是数据表,部分网站能提供一些统计图,但很少能实现数据的跨部门联机分析、数据关联分析。这主要是由于以往中国政务信息化的建设还处于部门建设阶段。美国在这方面的步伐要快一些,美国的网站,不仅提供原始数据和地理数据,还提供很多数据工具,这些工具很多都是公众、公益组织和一些商业机构提供的,这些应用为数据处理、联机分析、基于社交网络的关联分析等方面提供手段。如上提供的白宫访客搜索工具,可以搜寻到访客信息,并将白宫访客与其他微博、社交网站等进行关联,提高访客的透明度。

三是关于个人数据的隐私。在美国,公民的隐私和自有不可侵犯,美国没有个人身份证,也不能建立基于个人身份证号码的个人信息的关联,建立“中央数据银行”的提案也一再被否决。这一点,在中国不是问题,每个公民有唯一的身份信息,通过身份证信息,可以获取公民的基本信息。今后,随着国家人口基础数据库等基础资源库的建设,公民的社保、医疗等其他相关信息也能方便获取,当然信息还是限于政府部门使用,但很难完全保证整合起来的这些个人信息不被泄露或者利用。

数据是信息化建设的基础,两个大国在大数据领域的互相学习和借鉴,取长补短,将推进世界进入信息时代。我欣喜地看到,美国政府20xx年启动了“大数据研发计划”,投资2亿美元,推动大数据提取、存储、分析、共享、可视化等领域的研究,并将其与超级计算和互联网投资相提并论。同年,中国政府20xx年也批复了“国家政务信息化建设工程规划”,总投资额估计在几百亿,专门有人口、法人、空间、宏观经济和文化等五大资源库的五大建设工程。开放、共享和智能的大数据的时代已经来临!

读了《大数据时代》后,感觉到一个大变革的时代将要来临。虽然还不怎么明了到底要彻底改变哪些思维和操作方式,但显然作者想要“终结”或颠覆一些传统上作为我们思维和生存基本理论、方法和方式。在这样的想法面前,我的思想被强烈震撼,不禁战栗起来。

“在小数据时代,我们会假象世界是怎样运作的,然后通过收集和分析数据来验证这种假想。”“随着由假想时代到数据时代的过渡,我们也很可能认为我们不在需要理论了。”书中几乎肯定要颠覆统计学的理论和方法,也试图通过引用《连线》杂志主编安德森的话“量子物理学的理论已经脱离实际”来“终结”量子力学。对此我很高兴,因为统计学和量子力学都是我在大学学习时学到抽筋都不能及格的课目。但这两个理论实在太大,太权威,太基本了,我想我不可能靠一本书就能摆脱这两个让我头疼一辈子的东西。作者其实也不敢旗帜鲜明地提出要颠覆它们的论点,毕竟还是在前面加上了“很可能认为”这样的保护伞。

近几十年,我们总是在遇到各种各样的新思维。在新思维面前我们首先应该做到的就是要破和立,要改变自己的传统,跟上时代的脚步。即使脑子还跟不上,嘴巴上也必须跟上,否则可能会被扣上思想僵化甚至阻碍世界发展的大帽子。既然大数据是“通往未来的必然改变”,那我就必须“不受限于传统的思维模式和特定领域里隐含的固有偏见”,跟作者一起先把统计学和量子力学否定掉再说。反正我也不喜欢、也学不会它们。

当我们人类的数据收集和处理能力达到拍字节甚至更大之后,我们可以把样本变成全部,再加上有能力正视混杂性而忽视精确性后,似乎真的可以抛弃以抽样调查为基础的统计学了。但是由统计学和量子力学以及其他很多“我们也很可能认为我们不再需要的”理论上溯,它们几乎都基于一个共同的基础——逻辑。要是不小心把逻辑或者逻辑思维或者逻辑推理一起给“不再需要”的话,就让我很担心了!

《大数据时代》第16页“大数据的核心就是预测”。逻辑是——描述时空信息“类”与“类”之间长时间有效不变的先后变化关系规则。两者似乎是做同一件事。可大数据要的“不是因果关系,而是相关关系”,“知道是什么就够了,没必要知道为什么”,而逻辑学四大基本定律(同一律、矛盾律、排中律和充足理由律)中的充足理由律又“明确规定”任何事物都有其存在的充足理由。且逻辑推理三部分——归纳逻辑、溯因逻辑和演绎逻辑都是基于因果关系。两者好像又是对立的。在同一件事上两种方法对立,应该只有一个结果,就是要否定掉其中之一。这就是让我很担心的原因。

可我却不能拭目以待,像旁观者一样等着哪一个“脱颖而出”,因为我身处其中。问题不解决,我就没法思考和工作,自然就没法活了!更何况还有两个更可怕的事情。

其一:量子力学搞了一百多年,为了处理好混杂性问题,把质量和速度结合到能量上去了,为了调和量子力学与相对论的矛盾,又搞出一个量子场论,再七搞八搞又有了虫洞和罗森桥,最后把四维的时空弯曲成允许时间旅行的样子,恨不得马上造成那可怕的时间旅行机器。唯一阻止那些“爱因斯坦”们“瞎胡闹”的就是因果关系,因为爸爸就是爸爸,儿子就是儿子。那么大数据会不会通过正视混杂性,放弃因果关系最后反而搞出时间机器,让爸爸不再是爸爸,儿子不再是儿子了呢?其二:人和机器的根本区别在于人有逻辑思维而机器没有。《大数据时代》也担心“最后做出决策的将是机器而不是人”。如果真的那一天因为放弃逻辑思维而出现科幻电影上描述的机器主宰世界消灭人类的结果,那我还不如现在就趁早跳楼。

还好我知道自己对什么统计学、量子力学、逻辑学和大数据来说都是门外汉,也许上面一大篇都是在胡说八道,所谓的担心根本不存在。但问题出现了,还是解决的好,不然没法睡着觉。自己解决不了就只能依靠专家来指点迷津。

所以想向《大数据时代》的作者提一个合理化建议:把这本书继续写下去,至少加一个第四部分——大数据时代的逻辑思维。

在《大数据时代》一书中,大数据时代与小数据时代的区别:1、思维惯例。大数据时代区别与转变就是,放弃对因果关系的渴求,而取而代之关注相关关系。也就是说只要知道“是什么”,而不需要知道“为什么”。作者语言绝对,却反思其本质区别。数据的更多、更杂,导致应用主意只能尽量观察,而不是倾其所有进行推理?这也是明智之举2、使用用途。小数据停留在说明过去,大数据用驱动过去来预测未来。笔者认为数据的用途意在何为,与数据本身无关,而与数据的解读者有关,而相关关系更有利于预测未来。3、结构。大数据更多的体现在海量非结构化数据本身与处理方法的整合。大数据更像是理论与现实齐头并进,理论来创立处理非结构化数据的方法,处理结果与未来进行验证。4、分析基础。大数据是在互联网背景下数据从量变到质变的过程。笔者认为,小数据时代也即是信息时代,是大数据时代的前提,大数据时代是升华和进化,本质是相辅相成,而并非相离互斥。

数据未来的故事。数据的发展,给我们带来什么预期和启示?银行业天然有大数据的潜质。客户数据、交易数据、管理数据等海量数据不断增长,海量机遇和挑战也随之而来,适应变革,适者生存。我们可以有更广阔的业务发展空间、可以有更精准的决策判断能力、可以有更优秀的经营管理能力„„可以这些都基于数据的收集、整理、驾驭、分析能力,基于脱颖而出的创新思维和执行。因此,建设“数据仓库”,培养“数据思维”,养成“数据治理”,创造“数据融合”,实现“数据应用”才能拥抱“大数据”时代,从数据中攫取价值,笑看风云变换,稳健赢取未来。

48 2067673
");