最新圆柱表面积的教案免费 圆柱的表面积教案【最新5篇】

网友 分享 时间:

通过实例讲解圆柱的表面积计算,结合公式推导与图示,帮助学生理解圆柱的侧面积与底面积的关系,增强空间想象力与实际应用能力。以下是小编整理的优秀范文“圆柱表面积的教案免费”,希望您喜欢。

圆柱表面积的教案免费【第一篇】

1、前面我们已经认识了圆柱体,谁来说一下你对它有哪些了解?

2、不错,今天我们来继续研究圆柱,出示圆柱,观察大屏幕,从图中你了解到哪些数学信息?(圆柱的底面半径是4厘米,高是10厘米)

3、现在我们如果来做一个这样的盒子,你会想到什么数学问题?

4、这节课我们就一起来研究“圆柱的表面积”这个问题。

二、探究新知

1、初步感知

(1)请同学们观察圆柱,想一想什么是圆柱的表面积。

总结:圆柱所有面面积的总和就是圆柱的表面积。

(2)动手摸一摸,感受表面积。圆柱表面积包含哪几个部分?(两个底面面积+侧面面积)

(3)圆柱的表面积怎么求?(两个底面积+侧面积)

(4)圆柱的底面积很容易求出,但侧面是一个曲面,它的面积怎么求?你有什么想法?想象一下,圆柱的侧面展开后是一个怎么样的图形?你有什么想法。

2、侧面积

(1)小组合作:

请各个小组沿高把它的侧面展开,研究一下这个问题,验证你的猜想。

(2)学生汇报

(3)教师总结演示。

(4)推导圆柱侧面积公式

3、表面积

(1)总结表面积公式

怎么求圆柱的表面积?

圆柱的表面积=上底面积+下底面积+侧面积=两个底面的面积+侧面积。

(2)共同解决课前提出的问题:要制作这个盒子至少需要多少平分米的包装纸?

侧面积:2××10×30=1884(cm2),底面积:102×=314(cm2),表面积:314×2+1884=2512(cm2)

三、巩固练习

1、现在我们自己尝试来算一算这两个圆柱的表面积。

过渡语:同学们在生活中我们经常会遇到许多有关圆柱表面积的问题,请同学们看屏幕,要解决下列问题,需要求圆柱体哪几部分的面积。

5、如果一段圆柱形的木头,截成两截,它的表面积会有什么变化呢?

四、总结收获

同学们我们来回顾一下这节课你有那些收获?你有什么想提醒大家注意的吗?

请记住同学们善意的提醒,这节课就上到这!

五、板书设计

圆柱的表面积

侧面积=底面周长×高

圆柱表面积=s侧=c×h=2πrhs表=2πrh+2πr2

底面积×2=2πr2

圆柱表面积的教案免费【第二篇】

1、让学生经历操作、观察、比较和推理,理解圆柱侧面积和表面积的含义,探究并掌握圆柱侧面积和表面积的计算方法,能正确运用公式计算圆柱的侧面积和表面积相关的一些简单实际问题。

2、让学生在学习活动中进一步积累空间与图形的学习经验,培养创新意识及合作精神,以及抽象、概括能力,进一步发展学生的空间观念。

3、让学生进一步体会图形与实际生活的联系,感受立体图形学习的价值,提高数学学习的兴趣和学好数学的信心。

理解圆柱侧面积、表面积的意义,正确计算圆柱侧面积和表面积。

圆柱侧面积计算公式的推导过程。

茶叶盒,剪刀,计算器。

一、创设情境,导入新课

师:在前面的学习中,我们认识了圆柱,并且知道生活中有很多物体的形状是圆柱。大家看,这些圆柱形状的物体。(课件出示)这些圆柱的制作都需要一定的材料。(课件出示一个茶叶盒)请同学们想一想,要求“制作一个茶叶盒需要多少材料”,实际上求的是圆柱的什么?(让学生边演示边说)

二、动手操作,探究新知

1、介绍圆柱的侧面积、底面积和表面积。

师:要求“制作一个茶叶盒需要多少材料”,实际上是求圆柱的侧面面积和2个底面面积。(边指边说)我们把圆柱侧面的面积叫做圆柱的侧面积,把圆柱底面的面积叫做圆柱的底面积,圆柱的侧面积加上两个底面的面积叫做圆柱的表面积。(让学生互相说一说“什么是圆柱的表面积”。)

2、创疑激趣。

3、小组合作探究。

师:请同学们想一想,我们能不能把圆柱的侧面转化成所学过的图形求出它的面积呢?(小组合作探究,出示要求,结合圆柱的特征,用剪一剪、比一比等方法进行研究。)

4、小组汇报。

5、教师小结,课件演示。

师:刚才同学们把圆柱的侧面沿高剪开,展开后是一个长方形,利用长方形面积公式推导出了圆柱的侧面积的计算方法,下面我们便结合电脑演示,进一步加深理解。

6、学习计算圆柱表面积。

师:我们已经会求圆柱的侧面积,你现在会求圆柱的表面积了吗?(让学生回答,并口头列式,教师板书求表面积的算式,并板书课题“圆柱的表面积”。)

三、运用知识,解决问题

师:下面我们便利用学过的知识解决一些问题。

1、只列式不计算。订正时,让学生说想法。

2、完整解答下面各题。

让学生独立审题。问:要求“制作笔筒需要多少材料”,实际是求圆柱的什么?(让学生列综合算式,集体订正。)

四、知识拓展

将一个底面直径是8分米,高是10分米的圆柱沿底面直径垂直切开,它的表面积增加( )平方分米。

师:增加了几个面?是怎样的两个面?

(课件演示)

五、全课总结

师:通过本节课的学习,你有什么收获?

圆柱表面积的教案免费【第三篇】

教学目标

1、理解圆柱的侧面积和表面积的含义、

2、掌握圆柱侧面积和表面积的计算方法、

3、会正确计算圆柱的侧面积和表面积、

教学重点

理解求表面积、侧面积的计算方法,并能正确进行计算、

教学难点

能灵活运用表面积、侧面积的有关知识解决实际问题、

教学过程

一、复习准备

(一)口答下列各题(只列式不计算)、

1、圆的半径是5厘米,周长是多少?面积是多少?

2、圆的直径是3分米,周长是多少?面积是多少?

(二)长方形的面积计算公式是什么?

(三)回忆圆柱体的特征、

二、探究新知

(一)圆柱的侧面积、

1、学生讨论:圆柱的侧面展开图(是长方形)的长、宽和圆柱底面周长、高的关系、

(二)教学例1、

1、出示例1

例1、一个圆柱,底面的直径是米,高是米,求它的侧面积、(得数保留两位小数)

2、学生独立解答

教师板书:××

=×

≈(平方米)

答:它的侧面积约是2。83平方米、

3、反馈练习:一个圆柱,底面周长是94。2厘米,高是25厘米,求它的侧面积、

(三)圆柱的表面积、

1、教师说明:圆柱的侧面积加上两个底面积就是圆柱的表面积、

2、比较圆柱体的表面积和侧面积的区别、

(四)教学例2、

1、出示例2

例2、一个圆柱的高是15厘米,底面半径是5厘米,它的表面积是多少?

2、学生独立解答

侧面积:2×3。14×5×15=471(平方厘米)

底面积:3。14×25=78。5(平方厘米)

表面积:471+78。5×2=628(平方厘米)

答:它的表面积是628平方厘米、

3、反馈练习:一个圆柱,底面直径是2分米,高是45分米,求它的表面积、

(五)教学例3、

1、出示例3

例3、一个没有盖的圆柱形铁皮水桶,高是24厘米,底面直径是20厘米,做这个水桶要用铁皮多少平方厘米?(得数保留整百平方厘米)

2、教师提问:解答这道题应注意什么?

3、学生解答,教师板书、

水桶的侧面积:3。14×20×24=1507。2(平方厘米)

水桶的底面积:3。14×

=3。14×

=3。14×100

=314(平方厘米)

需要铁皮:1507。2+314=1821。2≈1900(平方厘米)

答:做这个水桶要用1900平方厘米、

5、“四舍五入”法与“进一法”有什么不同、

(2)“进一法”看要保留位数的后一位,是4或比4小的舍去尾数后都向前一位进一、

三、课堂小结

四、巩固练习

(一)求出下面各圆柱的侧面积、

1、底面周长是1。6米,高是0。7米

2、底面半径是3。2分米,高是5分米

(二)计算下面各圆柱的表面积、(单位:厘米)

(三)拿一个茶叶桶,实际量一下底面直径和高,算出它的表面积、(有盖和无盖两种)

五、课后作业

(二)一个圆柱的侧面积是188。4平方分米,底面半径是2分米,它的高是多少分米?

六、板书设计

探究活动

面包的截面

活动目的

培养学生的观察能力和操作能力,发展学生的空间观念、

活动题目

有一个圆柱形的面包,要切一刀把它分成两块,截面会是什么形状的图形?

活动过程

1、学生分组讨论、

2、利用橡皮泥捏一个圆柱体,进行实验,验证结论、

3、画出截面图,表示结论,发展空间观念、

参考答案

1、沿水平方向横切一刀,截面是圆形、(如图1)

2、沿垂直方向纵切一刀,截面是一个长方形、(如图2)

3、沿侧面斜切一刀,会形成大小不一的椭圆形、(如图3)

4、从顶面向侧面斜切一刀,会形成椭圆的一部分、(如图4)

5、从上底面斜切一刀到下底面,会形成椭圆的一部分、(如图5)

(图1)(图2)(图3)(图4)(图5)

圆柱表面积的教案免费【第四篇】

1.理解圆柱表面积的意义,掌握圆柱表面积的计算方法。

2.能正确地计算圆柱的表面积。

3会解决简单的实际问题。

4.初步培养学生抽象的逻辑思维能力。

教学重点

理解并掌握圆柱表面积的计算方法,并能正确进行圆柱表面积的计算。

教学难点

能充分运用圆柱表面积的相关知识灵活的解决实际问题。

教学过程

一复习旧知。

1计算下面圆柱的侧面积。

(1)底面周长米,高米。

(2)底面直径4厘米,高10厘米。

(3)底面半径分米,高8分米。

2求出下面长方体、正方体的表面积。

(1)长方体的长为4厘米,宽为7厘米,高为9厘米。

(2)正方体的棱长为6分米。

3讨论说说长方体、正方体的表面积的意义及其表面积的计算方法。

学生甲:长方体、正方体的表面积指的是长方体、正方体的六个面的面积的总和。

学生乙:计算长方体的表面积时只要计算长方体相互对立的3个面的面积,3个面的面积相加再乘以2就是长方体的表面积。正方体的表面积是棱长乘以棱长再乘以6。

二新课导入。

1教师:以前我们学习了长方体、正方体的表面积的意义及其表面积的求法,那么圆柱体的表面积的计算和长方体、正方体的表面积的.计算有什么区别和联系呢?圆柱的表面积又是如何计算的呢?接下来我们一起来讨论和探索这个问题。(板书:圆柱的表面积)

2学生讨论:你认为圆柱的表面积是指哪一部分?它由几个面组成?

(1)学生分组讨论。

(2)学生汇报讨论结果。

3反馈小节:圆柱的表面积指的是圆柱的侧面积和两个底面积的总和,圆柱的表面积由一个侧面机和两个底面组成。(板书:圆柱的侧面积+圆柱的两个底面积=圆柱的表面积)

4教师进行圆柱模型表面展开演示。

(1)学生说说展开的侧面是什么图形。

学生:圆柱展开的侧面是一个长方形。

(2)学生说说长方形的长和宽与圆柱的底面周长和高有什么关系?

学生:长方体的长(或宽)等于圆柱的底面积,长方体的宽(或长)等于圆柱的高。

(3)圆柱的侧面积是怎样计算的?抽生回答进行复习整理。(板书:圆柱的侧面积=圆柱的底面周长×圆柱的高)

(3)圆柱的底面积怎么计算?(复习底面积的计算方法)。

5说说实际生活中有哪些圆柱体?哪些表面是完整的,哪些表面是不完整的?

学生举例:完整的圆柱有两个底面,不完整的圆柱只有一个底面(如水桶)或者根本就没有底面(如烟囱)。

教师:所以我们每个同学在计算圆柱的表面积时要特别认真,要特别注意这个圆柱到底有几个底面。

三新课教学。

1例2一个圆柱的高是分米,底面半径2分米,它的表面积是多少?(课件演示)

2学生尝试练习,教师巡回检查、指导。

3反馈评价:

(1)侧面积:2×2×=(平方分米)

(2)底面积:×2×2=(平方分米)

(3)表面积:+=(平方分米)

答:它的表面积是平方分米。

4学生质疑。

5教师强调答题过程的清楚完整和计算的正确。

6教学小节:在计算过程中你发现了什么?计算圆柱的表面积一般要分成几步来计算呀?

四反馈练习:试一试。

1学生尝试练习:要做一个没有盖的圆柱形铁皮水桶,高50厘米,底面直径为30厘米,至少需要多少铁皮?(得数保留整数)

2学生交流练习结果(注意计算结果的要求)。

3教师评议。

教师:在实际运用中四舍五入法和进一法有什么不同?

学生;计算使用材料的用量时为确保使用材料的充足通常都使用进一法,计算结果如果使用四舍五入法也许会出现使用材料不足的现象。

五拓展练习

1教师发给学生教具,学生分组进行数据测量。

2学生自行计算所需的材料。

3计算结果汇报。

教师:同学们的答案为什么会有不同?哪里出现偏差了?

学生甲:可能是数据的测量不准确。

学生乙:可能是计算出现错误。

教师:在实际运用中如果数据测量不准确或者计算出现错误,或许就会造成很大的经济损失,这种损失也许是不可估量的,但事实上它又是很容易避免的。所以我们每个同学都要养成认真、仔细的好习惯。

六巩固练习。

1计算下面图形的表面积(单位:厘米)(略)

2计算下面各圆柱的表面积。

(1)底面周长是厘米,高分米。

(2)底面半径米,高2米。

(3)底面直径10分米,高80厘米。

3一个圆柱形的罐头盒,底面直径是16厘米,高是10厘米,它的表面积是多少厘米?

4一个圆柱铁桶(没盖),高是5分米,底面半径是2分米,做一个这样的铁桶,至少需要多少铁皮?(得数保留一位小数)

圆柱表面积的教案免费【第五篇】

1、使学生理解和掌握圆柱体侧面积和表面积的计算方法,能正确运用公式计算圆柱的侧面积和表面积。

2、培养学生观察、操作、概括的能力和利用所学知识合理灵活地分析、解决实际问题的能力。

3、培养学生的合作意识和主动探求知识的学习品质和实践能力。

教学重难点

教学重点:圆柱表面积的计算。

教学难点:圆柱体侧面积计算方法的推导。

教学工具

ppt课件

教学过程

一、检查复习,引入新课(复习圆柱体的特征)

1、复习圆的周长与面积公式、长方形的面积公式。

2、师:上节课,我们认识了一个新的几何形体——圆柱。知道它是由平面和曲面围成的立体图形。

引入:两个底面和侧面合在一起就是圆柱的表面。这节课,我们就一起来学习圆柱的表面积。

二、引导探究,学习新知

(一)教学圆柱表面积的意义。

设疑:长方体6个面的总面积,叫做它的表面积。哪些面的总面积是圆柱体的表面积呢?

板书:底面积×2+侧面积=表面积

要求圆柱的表面积,首先应该计算它的底面积和侧面积。

(二)根据条件,计算圆柱的底面积。

圆柱的底面是圆形,同学们会求它的面积吗?

(多媒体逐一出示圆柱及条件,求它的底面积,并记录结果。)

条件:(厘米)r=3d=4c=

底面积(平方厘米)

(三)教学圆柱体侧面积的计算

1、引导探究圆柱体侧面积的计算方法。

(2)小组合作探究。(剪圆柱形纸筒)

(3)汇报交流研究结果,多媒体课件展示。

(4)小结:同学们会动脑,会思考,巧妙地运用了把曲面转化为平面的方法,探讨发现了圆柱体侧面积正好等于它的底面周长与高的乘积。

2、计算圆柱体的侧面积。

多媒体回到前面三个圆柱,逐一给出三个圆柱的高,求它的侧面积。并把结果记录下来。

条件(厘米)h=5h=8h=10

侧面积(平方厘米)

(四)教学求圆柱的表面积。

1、设疑:学会了计算圆柱的底面积和侧面积,怎样计算它的表面积?

2、学生根据数据进行计算?

3、汇报计算方法及结果,媒体出示结果进行验证。

表面积(平方厘米)

(五)小结:圆柱表面积的意义及计算方法。

三、练习巩固,灵活运用

1.求下面圆柱的侧面积。

(1)底面周长是,高是。

(2)底面半径是,高是5dm。

四、总结反思,畅谈收获

这个课你收获了什么?

板书

圆柱的表面积

圆柱的表面积=两个底面积+侧面积

圆柱的侧面积=底面周长×高

长方形的面积=长×宽

48 3566390
");