数学高中教案下载电子版精彩4篇
【请您参阅】下面供您参考的“数学高中教案下载电子版精彩4篇”是由阿拉网友精心整理分享的,供您阅读参考之用,希望此例范文对您有所帮助,喜欢就复制下载支持一下小编了!
数学高中教案下载电子版【第一篇】
品学皆优
你是一个全面发展的好学生。你文静温和,大家都愿意和你一起玩。上课时你能积极思考老师提出的问题。每次作业也完成得很好,令老师感到非常满意。每次的值日工作你都能出色地完成。如果你能一如既往的走下去,将会是老师、家人、同学的骄傲!
朴实无华
你是一个朴实的孩子。你脚踏实地、勤奋好学,但是你也要知道学习不是死记硬背,还要讲究方法、技巧。学习上有不懂的问题,不要羞于开口,要多问,多思考,多练习。老师相信:只要你信心不倒,努力不懈,终有一天会到达成功的彼岸!
善良懂事
善良的孩子最让人欣赏,恰好你就是;乐观的孩子最若惹人喜爱,恰好你也是;懂事的孩子最值得称赞,恰好还是你。课堂上,你总是专心致志,从你高举的手中,老师看到了你的自信。翻开你的作业本,更是让人赞不绝口。望你再接再厉,创造一个更辉煌的明天!
顽皮好动
你是一个非常聪明、机灵还有点调皮的孩子。这半个学期以来,你的作业质量有了显著的提高,老师也为你感到高兴。但你缺乏自制力,课堂上总是乱说乱动。老师希望你快快成长起来,早日摆脱稚气,做一个自省自律的好学生。
优秀干部
你是一个上进心强,聪明而且心地善良的孩子。担任***后,你更是能严格要求自己,处处做同学们的榜样。同学们对班委进行民主评议时,你受到的赞扬最多。真棒!老师很欣赏你的工作能力,相信在以后的学习与工作中,你会发展得更好。
运动健将
运动场上你矫健的身姿,拼搏的精神,夺冠的斗志,感染着班级的每一位同学。劳动时,重活、累活你总是抢着去干。可真正的男子汉不仅要有健壮的体魄,还应该有丰富的知识。相信你会把运动场上的拼搏精神用在学习上,给我们一个又一个的惊喜!
调皮捣蛋
你做事认真,字写得漂亮,班的宣传墙报每次都留下你秀丽的笔迹。参加演讲比赛成绩喜人。有时还调皮得可爱。但是,你捉弄人的功夫让同学们个个害怕。老师认为还是不让别人害怕为好。请紧记:与人为善是一种美德。
慢条斯理
心情“晴朗”,你会侃侃而谈,课堂发言成了全班的亮点;学习“快乐”,你会兢兢业业,工整的作业让老师心旷神情。但这样的时候总嫌不够,甚至太少。在你争吵的时候,在你慢条斯理的时候,时间,像流逝的水,在你脚下匆匆而过。亲爱的朋友,你不感到可惜吗?
可爱小弟
男孩***,可爱小弟弟。对人很温和,有副好脾气。关心组上事,热爱班集体。喜欢动脑筋,爱钻偏难题。数学比较好,物理还可以。语文有点弱,作文羞于提。文理不可偏,发展应整齐。可怜瘦弱貌,不爱练身体。愿你快成长,盼你有出息。报国建勋日,都夸***!
累累硕果
是你,给我们带来了勤勉朴实的学风;是你,给我们带来了助人为乐的风尚。当眼前闪烁着一行行娟秀的字迹时,当面前呈现出一页页工整的作业时,我们便知道是你在默默耕耘。今天是收获的季节,当累累硕果捧在你眼前时,我要对你说:这是一个新的起点!
埋头苦干
学习上认真与执著的你给老师留下深刻的印象;劳动中不声不响、埋头苦干的你令老师很欣赏;工作中细心负责的你深得老师和同学的好评。但是你应该活泼一些,十多岁的少年本应充满热情;你应该灵活一些,学习光有自觉性还不够。继续努力吧,我深深地为你祝福!
轻轻一笑
你言语不多,待人谦和、善良。学习和做人一样,默默用功。真喜欢你笑的样子。别人与你讲话时你总喜欢轻轻一笑。若是在课堂上倒是很漂亮的一招“退敌”之术,可若在课下,就把想与你交谈的朋友都挡回去了。真心希望能见到你与同学们快乐地交谈。
思维灵活
你思维灵活,求知欲强,富于质疑精神,对事物常有不落俗套的看法。老师喜欢你那种敢想、敢说、敢问、敢辩的课堂表现;老师也喜欢你那干净整齐的作业,批阅时真是赏心悦目。看着你的学习成绩不断进步,老师为你高兴、为你自豪。愿你坚持不懈,再创辉煌!
崭露头角
你恬静、柔和,富有才气;你刻苦、勤奋、富有进取心。不论在哪个方面,你都具有巨大的潜能。现在你已经在许多方面崭露头角:文学才华令大伙刮目相看,艺术才华令人耳目一新……才华需要展现,只有在展现中,才能得到进一步锻炼,在锻炼中才能更成熟。
真诚善良
回想你,脑海中即刻浮现你清俊的浅浅的笑,你的真诚,你的善良,加上你的勤奋和聪颖,让你的学习和生活如此快乐和充实,硕果累累。你的沉稳,你的机智,让我们每个人都感到踏实,充满信心。相信在今后的学习和工作中,你会表现得更出色,你会是最棒的!
自信勤奋
自信、勤奋的你是我最优秀的学生之一。你深深爱着我们的班集体,经常主动清洁教室、帮助同学。你能认真地学好每一门功课,在学习上有一种积极进取的可贵精神,这是多么令人钦佩呀!你是个聪明的孩子,我相信你将成为胸纳百川,恢宏大度的杰出人才。
作业拖拉
你观察细致,绘画认真,画出的金鱼、竹子栩栩如生,真不简单。但是你的自由活动占据了太多的时间,作业也经常拖拖拉拉。老师希望看到你能珍惜时间,能将你的聪明才智用到学习上去,能成为一个品学兼优的好学生。
数学高中教案下载电子版【第二篇】
高中数学
必修1 第一章 集合与函数概念
1.1 集合1.2 函数及其表示
1.3 函数的基本性质
第二章 基本初等函数(ⅰ)
2.1 指数函数
2.2 对数函数
2.3 幂函数
第三章 函数的应用
3.1 函数与方程
3.2 函数模型及其应用
必修2 第一章 空间几何体
1.1 空间几何体的结构
1.2 空间几何体的三视图和直观图
1.3 空间几何体的表面积与体积
第二章 点、直线、平面之间的位置关系
2.1 空间点、直线、平面之间的位置关系
2.2 直线、平面平行的判定及其性质
2.3 直线、平面垂直的判定及其性质 第三章 直线与方程
3.1 直线的倾斜角与斜率
3.2 直线的方程
3.3 直线的交点坐标与距离公式
第四章 圆与方程
4.1 圆的方程
4.2 直线、圆的位置关系
4.3 空间直角坐标系
必修3 第一章 算法初步
1.1 算法与程序框图
1.2 基本算法语句
1.3 算法案例
阅读与思考 割圆术
第二章 统计
2.1 随机抽样
阅读与思考 一个著名的案例
阅读与思考 广告中数据的可靠性
阅读与思考 如何得到敏感性问题的诚实反应
2.2 用样本估计总体
阅读与思考 生产过程中的质量控制图
2.3 变量间的相关关系
阅读与思考 相关关系的强与弱
第三章 概率
3.1 随机事件的概率
阅读与思考 天气变化的认识过程
3.2 古典概型
3.3 几何概型
必修4
第一章 三角函数
1.1 任意角和弧度制
1.2 任意角的三角函数
1.3 三角函数的诱导公式
1.4 三角函数的图象与性质
1.5 函数y=asin(ωx+ψ)
1.6 三角函数模型的简单应用
第二章平面向量
2.1平面向量的实际背景及基本概念
2.2平面向量的线性运算
2.3平面向量的基本定理及坐标表示
2.4平面向量的数量积
2.5平面向量应用举例
第三章 三角恒等变换
3.1 两角和与差的正弦、余弦和正切公式
3.2 简单的三角恒等变换
必修5
第一章 解三角形
1.1 正弦定理和余弦定理
探究与发现 解三角形的进一步讨论
1.2 应用举例
阅读与思考 海伦和秦九韶
1.3 实习作业
第二章 数列
2.1 数列的概念与简单表示法
阅读与思考 斐波那契数列
阅读与思考 估计根号下2的值
2.2 等差数列
2.3 等差数列的前n项和
2.4 等比数列
2.5 等比数列前n项和
阅读与思考 九连环
探究与发现 购房中的数学
第三章 不等式
3.1 不等关系与不等式
3.2 一元二次不等式及其解法
3.3 二元一次不等式(组)与简单的线性规划问题
阅读与思考 错在哪儿
信息技术应用 用excel解线性规划问题举例
3.4 基本不等式
选修1-1 第一章 常用逻辑用语
1.1 命题及其关系
1.2 充分条件与必要条件
1.3 简单的逻辑联结词
1.4 全称量词与存在量词
第二章 圆锥曲线与方程
2.1 椭圆
探究与发现 为什么截口曲线是椭圆
信息技术应用 用《几何画板》探究点的轨迹:椭圆
2.2 双曲线
2.3 抛物线
阅读与思考 圆锥曲线的光学性质及其应用
第三章 导数及其应用
3.1 变化率与导数
3.2 导数的计算
探究与发现 牛顿法──用导数方法求方程的近似解
3.3 导数在研究函数中的应用
信息技术应用 图形技术与函数性质
3.4 生活中的优化问题举例
实习作业 走进微积分
选修1-2
第一章 统计案例
1.1 回归分析的基本思想及其初步应用
1.2 独立性检验的基本思想及其初步应用
第二章 推理与证明
2.1 合情推理与演绎证明
阅读与思考 科学发现中的推理
2.2 直接证明与间接证明
第三章 数系的扩充与复数的引入
3.1 数系的扩充和复数的概念
3.2 复数代数形式的四则运算
第四章 框图
4.1 流程图
4.2 结构图
信息技术应用 用word2002绘制流程图
数学 选修2-1
第一章 常用逻辑用语
命题及其关系
充分条件与必要条件
简单的逻辑联结词
全称量词与存在量词
第二章 圆锥曲线与方程
曲线与方程
椭圆
探究与发现 为什么截口曲线是椭圆
信息技术应用 用《几何画板》探究点的轨迹:椭圆
双曲线
探究与发现
抛物线
探究与发现
阅读与思考 第三章 空间向量与立体几何
空间向量及其运算
阅读与思考 向量概念的推广与应用
立体几何中的向量方法
选修 2-2 第一章 导数及其应用
变化率与导数
导数的计算
第三章 统计案例
回归分析的基本思想及其初步应用
独立性检验的基本思想及其初步应用
选修3-1
第一讲 早期的算术与几何
一 古埃及的数学
二 两河流域的数学
导数在研究函数中的应用
三
生活中的优化问题举例
第二讲
定积分的概念
一
微积分基本定理
二
定积分的简单应用
三 第二章 推理与证明
四
合情推理与演绎推理
第三讲
直接证明与间接证明
一
数学归纳法
二 第三章 数系的扩充与复数的引入
三
数系的扩充和复数的概念
四 复数代数形式的四则运算
第四讲
一 选修2-3
二 第一章 计数原理
三
分类加法计数原理与分步乘法计数
四 原理
第五讲
探究与发现 子集的个数有多少
一
排列与组合二
探究与发现 组合数的两个性质
三
二项式定理
第六讲
探究与发现 “杨辉三角”中的一些
一 秘密
二 第二章 随机变量及其分布
第七讲
离散型随机变量及其分布列
一
二项分布及其应用
二
探究与发现 服从二项分布的随机变
三 量取何值时概率最大
四
离散型随机变量的均值与方差
第八讲
正态分布
一
信息技术应用 μ,σ对正态分布的影
二 响
三
丰富多彩的记数制度
古希腊数学
希腊数学的先行者
毕达哥拉斯学派
欧几里得与《原本》
数学之神──阿基米德
中国古代数学瑰宝
《周髀算经》与赵爽弦图
《九章算术》
大衍求一术
中国古代数学家
平面解析几何的产生 坐标思想的早期萌芽
笛卡儿坐标系
费马的解析几何思想
解析几何的进一步发展
微积分的诞生
微积分产生的历史背景
科学巨人牛顿的工作
莱布尼茨的“微积分” 近代数学两巨星
分析的化身──欧拉
数学王子──高斯
千古谜题
三次、四次方程求根公式的发现
高次方程可解性问题的解决
伽罗瓦与群论
古希腊三大几何问题的解决
对无穷的深入思考 古代的无穷观念
无穷集合论的创立
集合论的进一步发展与完善 第九讲 中国现代数学的开拓与发展
一 中国现代数学发展概观
二 人民的数学家──华罗庚
三 当代几何大师──陈省身
选修3-3 引言
第一讲 从欧氏几何看球面
一平面与球面的位置关系
二 直线与球面的位置关系和球幂定理
三 球面的对称性
第二讲 球面上的距离和角
一 球面上的距离
二 球面上的角
思考题
第三讲 球面上的基本图形
一 极与赤道
二 球面二角形
三 球面三角形
1.球面三角形
2.三面角
3.对顶三角形
4.球极三角形
思考题
第四讲 球面三角形
一 球面三角形三边之间的关系
二、球面“等腰”三角形
三 球面三角形的周长
四 球面三角形的内角和
思考题
第五讲 球面三角形的全等
1.“边边边”()判定定理
2.“边角边”()判定定理
3.“角边角”()判定定理
4.“角角角”()判定定理
思考题
第六讲 球面多边形与欧拉公式
一 球面多边形及其内角和公式
二 简单多面体的欧拉公式
三 用球面多边形的内角和公式证明欧
拉公式
思考题
第七讲 球面三角形的边角关系
一 球面上的正弦定理和余弦定理
二 用向量方法证明球面上的余弦定理
1.向量的向量积
2.球面上余弦定理的向量证明
三 从球面上的正弦定理看球面与平面
四 球面上余弦定理的应用──求地球上两城市间的距离
思考题
第八讲 欧氏几何与非欧几何
一平面几何与球面几何的比较
二 欧氏平行公理与非欧几何模型──庞加莱模型
三 欧氏几何与非欧几何的意义
阅读与思考 非欧几何简史
选修3-4 引言
第一讲平面图形的对称群
一平面刚体运动
1.平面刚体运动的定义
2.平面刚体运动的性质
思考题
二 对称变换
1.对称变换的定义
2.正多边形的对称变换
3.对称变换的合成4.对称变换的性质
5.对称变换的逆变换
思考题
三平面图形的对称群
思考题
第二讲 代数学中的对称与抽象群的概念
一 n元对称群sn
思考题
二 多项式的对称变换
思考题
三 抽象群的概念
1.群的一般概念
2.直积
思考题
第三讲 对称与群的故事
一 带饰和面饰
思考题
二 化学分子的对称群
三 晶体的分类
四 伽罗瓦理论
选修4-1 第一讲 相似三角形的判定及有关性质
一平行线等分线段定理
二平行线分线段成比例定理
三 相似三角形的判定及性质
1.相似三角形的判定
2.相似三角形的性质
四 直角三角形的射影定理
第二讲 直线与圆的位置关系
一 圆周角定理
二 圆内接四边形的性质与判定定理
三 圆的切线的性质及判定定理
四 弦切角的性质
五 与圆有关的比例线段
第三讲 圆锥曲线性质的探讨
一平行射影
二平面与圆柱面的截线
三平面与圆锥面的截线
选修 4-2 引言
第一讲 线性变换与二阶矩阵
一 线性变换与二阶矩阵
(一)几类特殊线性变换及其二阶矩阵
1.旋转变换
2.反射变换
3.伸缩变换
4.投影变换
5.切变变换
(二)变换、矩阵的相等
二 二阶矩阵与平面向量的乘法
(二)一些重要线性变换对单位正方形区域的作用
第二讲 变换的复合与二阶矩阵的乘法
一 复合变换与二阶矩阵的乘法
二 矩阵乘法的性质
第三讲 逆变换与逆矩阵
一 逆变换与逆矩阵
1.逆变换与逆矩阵
2.逆矩阵的性质
二 二阶行列式与逆矩阵
三 逆矩阵与二元一次方程组
1.二元一次方程组的矩阵形式
2.逆矩阵与二元一次方程组
第四讲 变换的不变量与矩阵的特征向量
一 变换的不变量——矩阵的特征向量
1.特征值与特征向量
2.特征值与特征向量的计算
二 特征向量的应用
1.aa的简单表示
2.特征向量在实际问题中的应用
学习
总结
报告选修4-4 引言
第一讲 坐标系
一平面直角坐标系
二 极坐标系
三 简单曲线的极坐标方程
四 柱坐标系与球坐标系简介
第二讲 参数方程
一 曲线的参数方程
二 圆锥曲线的参数方程
三 直线的参数方程
四 渐开线与摆线
学习总结报告
选修4-5 引言
第一讲 不等式和绝对值不等式
一 不等式
1.不等式的基本性质
2.基本不等式
3.三个正数的算术-几何平均不等式
第四讲 数伦在密码中的应用
二 绝对值不等式
1.绝对值三角不等式
2.绝对值不等式的解法
第二讲 讲明不等式的基本方法
一 比较法
二 综合法与分析法
三 反证法与放缩法
第三讲 柯西不等式与排序不等式
一 二维形式柯西不等式
二 一般形式的柯西不等式
三 排序不等式
第四讲 数学归纳法证明不等式
一 数学归纳法
二 用数学归纳法证明不等式
学习总结报告
选修4-6 引言
第一讲 整数的整除
一 整除
1.整除的概念和性质
2.带余除法
3.素数及其判别法
二 最大公因数与最小公倍数
1.最大公因数
2.最小公倍数
三 算术基本定理
第二讲 同余与同余方程
一 同余
1.同余的概念
2.同余的性质
二 剩余类及其运算
三 费马小定理和欧拉定理
四 一次同余方程
五 拉格朗日插值法和孙子定理
六 弃九验算法
第三讲 一次不定方程
一 二元一次不定方程
二 二元一次不定方程的特解
三 多元一次不定方程
一 信息的加密与去密
二 大数分解和公开密钥
学习总结报告
附录一 剩余系和欧拉函数
附录二 多项式的整除性
选修4-7 引言
第一讲 优选法
一 什么叫优选法
二 单峰函数
三 黄金分割法——法
1.黄金分割常数
2.黄金分割法——法
阅读与思考 黄金分割研究简史
四 分数法
1.分数法
阅读与思考 斐波那契数列和黄金分割
2.分数法的最优性
五 其他几种常用的优越法
1.对分法
2.盲人爬山法
3.分批试验法
4.多峰的情形
六 多因素方法
1.纵横对折法和从好点出发法
2.平行线法
3.双因素盲人爬山法
第二讲 试验设计初步
一 正交试验设计法
1.正交表
2.正交试验设计
3.试验结果的分析
4.正交表的特性
二 正交试验的应用
学习总结报告
附录一
附录二
附录三
选修4-9 引言
第一讲 风险与决策的基本概念
一 风险与决策的关系
二 风险与决策的基本概念
1.风险(平均损失)
2.平均收益
3.损益矩阵
4.风险型决策
探究与发现 风险相差不大时该如何决策
第二讲 决策树方法
第三讲 风险型决策的敏感性分析
第四讲 马尔可夫型决策简介
一 马尔可夫链简介
1.马尔可夫性与马尔可夫链
2.转移概率与转移概率矩阵
二 马尔可夫型决策简介
三 长期准则下的马尔可夫型决策理论
1.马尔可夫链的平稳分布
2.平稳分布与马尔可夫型决策的长期准则
3.平稳准则的应用案例
学习总结报告
附录
数学高中教案下载电子版【第三篇】
我是来自理科组的数学老师周桂宇,今天我要进行说课的课题是高中数学必修一第一章第三节第一课时《函数单调性与最大(小)值》。首先我们先初步了解下高一数学整体的情况,从量上看,高一数学任务很重,高一上学期我们将要学,必修一全部内容,必修四第一章,高一下学期学必修四剩下内容,必修五全部内容,必修二其中几章;从质上看,好多同学才一接触到高一数学就觉得很难,难度并不在于知识点的深度和综合能力,而在于从初中相对具体形象的数学学习一下进入高中抽象的,与生活似乎关系不大的学习,很多同学表现出非常大不适应。因此,如果觉得高一数学“难”,复习的重点,应当放在分析为什么自己觉得学习过的知识点“难”上。
难点一:抽象函数
f(x)规则的含义虽然看起来简单,但如果理解不深刻,对于后面的解题有很大的影响。
难点二:三角函数
这一部分的重点是一定要从初中锐角三角函数的定义中跳出来。题目做到一定程度,其实很容易发现,高一考察的三角恒等只有不多的几种题型,在课程与复习中,我们也会注重给学生总结三角恒等变形的“统一论”,把握住降次,辅助角和万能公式这些关键方法,一般的三角恒等迎刃而解。关键是,一定要多做题。
难点三:向量部分 ,这部分其实是这学期最简单的部分。简单的原因是,以前从来没有学过,初次接触,考试不会太难。这部分的复习也最为轻松——围绕向量的几何表示,代数表示和坐标表示理解向量的各种运算法则。
难点四:综合题型 压轴题基本上,都是以函数一章作为最核心的知识载体,中间掺杂向量和三角的运算。解决这样的题目,方法几乎是固定的,那就是首先利用抽象函数性质,将带有f的条件化为不带有f的条件,然后利用三角与向量的运算化简或证明。非压轴题出题方法可能更自由,但是综合性往往没有太强,仍然属于各个板块内的综合。
对于本次课我将从教材分析;教学目标分析;教法、学法;教学过程;教学评价五个方面来陈述我对本节课的设计方案。恳请在座的专家评委批评指正
一、教材分析
函数的单调性是函数的重要性质.从知识的网络结构上看,函数的单调性既是函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数的单调性等内容的基础,在研究各种具体函数的性质和应用、解决各种问题中都有着广泛的应用.函数单调性概念的建立过程中蕴涵诸多数学思想方法,对于进一步探索、研究函数的其他性质有很强的启发与示范作用.
根据函数单调性在整个教材内容中的地位与作用,本节课教学应实现如下教学目标: 知识与技能 使学生理解函数单调性的概念,初步掌握判别函数单调性的方法; 过程与方法 引导学生通过观察、归纳、抽象、概括,自主建构单调增函数、单调减函数等概念;能运用函数单调性概念解决简单的问题;使学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力.
情感态度与价值观 在函数单调性的学习过程中,使学生体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度. 根据上述教学目标,本节课的教学重点是函数单调性的概念形成和初步运用.虽然高一学生已经有一定的抽象思维能力,但函数单调性概念对他们来说还是比较抽象的.因此,本节课的学习难点是函数单调性的概念形成.
二、教法学法
为了实现本节课的教学目标,在教法上我采取了:
1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参与的积极性.
2、在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念.
3、在鼓励学生主体参与的同时,不可忽视教师的主导作用,要教会学生清晰的思维、严谨的推理,并顺利地完成书面表达.
在学法上我重视了:
1、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的质的飞跃.
2、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和分析解决问题的能力.
三、教学过程
函数单调性的概念产生和形成是本节课的难点,为了突破这一难点,在教学设计上采用了下列四个环节.
(一)创设情境,提出问题
(问题情境)(播放中央电视台天气预报的音乐).如图为某地区2006年元旦这一天24小时内的气温变化图,观察这张气温变化图:
[教师活动]引导学生观察图象,提出问题:
问题1:说出气温在哪些时段内是逐步升高的或下降的?
问题2:怎样用数学语言刻画上述时段内“随着时间的增大气温逐渐升高”这一特征?
[设计意图]问题是数学的心脏,问题是学生思维的开始,问题是学生兴趣的开始.这里,通过两个问题,引发学生的进一步学习的好奇心.
(二)探究发现 建构概念
[学生活动]对于问题1,学生容易给出答案.问题2对学生来说较为抽象,不易回答.
[教师活动]为了引导学生解决问题2,先让学生观察图象,通过具体情形,例如,“t1=8时,f(t1)=1,t2=10时,f(t2)= 4”这一情形进行描述.引导学生回答:对于自变量8
在学生对于单调增函数的特征有一定直观认识时,进一步提出:
问题3:对于任意的t
1、t2∈[4,16]时,当t1
[学生活动]通过观察图象、进行实验(计算机)、正反对比,发现数量关系,由具体到抽象,由模糊到清晰逐步归纳、概括、抽象出单调增函数概念的本质属性,并尝试用符号语言进行初步的表述.
[教师活动]为了获得单调增函数概念,对于不同学生的表述进行分析、归类,引导学生得出关键词“区间内”、“任意”、“当
时,都有 ”.告诉他们“把满足这些条件的函数称之为单调增函数”,之后由他们集体给出单调增函数概念的数学表述.提出:
问题4: 类比单调增函数概念,你能给出单调减函数的概念吗? 最后完成单调性和单调区间概念的整体表述.
2.对于给定图象的函数,借助于图象,我们可以直观地判定函数的单调性,也能找到单调区间.而对于一般的函数,我们怎样去判定函数的单调性呢?
[教师活动]问题6:证明
[学生活动]步骤:取值
在区间(0,+ ∞)上是单调减函数.
作差变形
定号
判断.
[设计意图]有效的数学学习过程,不能单纯的模仿与记忆,数学思想的领悟和学习过程更是如此.利用学生自己提出的问题,让学生在解题过程中亲身经历和实践体验,师生互动学习,生生合作交流,共同探究.
(四)回顾反思深化概念
[教师活动]给出一组题:
1、定义在r上的单调函数f(x)满足f(2)>f(1),那么函数f(x)是r上的单调增函数还是单调减函数?
2、若定义在r上的单调减函数f(x)满足f(1+a)
的取值范围吗?
[学生活动]学生互相讨论,探求问题的解答和问题的解决过程,并通过问题,归纳总结本节课的内容和方法.[设计意图]通过学生的主体参与,使学生深切体会到本节课的主要内容和思想方法,从而实现对函数单调性认识的再次深化.[教师活动]作业布置:
(1)阅读课本p34-35例2
四、教学评价
学生学习的结果评价当然重要,但是更重要的是学生学习的过程评价.教师应当高度重视学生学习过程中的参与度、自信心、团队精神、合作意识、独立思考习惯的养成、数学发现的能力,以及学习的兴趣和成就感.学生熟悉的问题情境可以激发学生的学习兴趣,问题串的设计可以让更多的学生主动参与,师生对话可以实现师生合作,适度的研讨可以促进生生交流以及团队精神,知识的生成和问题的解决可以让学生感受到成功的喜悦,缜密的思考可以培养学生独立思考的习惯.让学生在教师评价、学生评价以及自我评价的过程中体验知识的积累、探索能力的长进和思维品质的提高,为学生的可持续发展打下基础
数学高中教案下载电子版【第四篇】
高中数学教案模板范文篇1:高中数学教学案例
问题一、上述结论对其他函数成立吗?为什么?
画出函数的图象:、,比较函数图象与轴的交点和相应方程的根的关系。
函数的图象与轴交点,即当,该方程有几个根,的图象与轴就有几个交点,且方程的根就是交点的横坐标。
意图:通过各种函数,将结论推广到一般函数。2.函数零点概念
对于函数,把使的实数叫做函数的零点。
说明:函数零点不是一个点,而是具体的自变量的取值。3.方程的根与函数零点的关系
方程有实数根 函数
函数的图象与轴有交点 有零点
以上关系说明:函数与方程有着密切的联系,从而有些方程问题可以转化为函数问题来求解,同样,函数问题有时也可转化为方程问题.这正是函数与方程
思想的基础。
4.零点存在性定理
问题二、观察图象(气温变化图)片段,根据该图象片段,将其补充成完整函数图象,并问:是否有某时刻的温度为0℃?为什么?(假设气温是连续变化的)
意图:通过类比得出零点存在性定理。
给出零点存在性定理:如果函数
曲线,并且有,使得,那么,函数在区间上的图象是连续不断一条内有零点.即存在的根。在区间,这个c也就是方程
问题三、不是连续函数结论还成立吗?请举例说明。
结合函数的图象说明。问题四、若
问题五、若,函数,函数在区间在在区间在上一定没有零点吗? 上只有一个零点吗?可能
有几个? 问题六、时,增加什么条件可确定函数
有一个零点?
意图:通过四个问题使学生准确理解零点存在性定理。5.例题:求函数的零点的个数。在区间在上只
问题七、能否确定一个区间,使函数在该区间内有零点。
问题八、该函数有几个零点?为什么?
意图:通过例题分析,学会用零点存在性定理确定零点存在区间,并且结合函数性质,判断零点个数的方法。
六.目标检测设计
1.函数在区间[-5,6]上是否存在零点?若存在,有几个?
2.利用函数图象判断下列方程有几个根
(1)
(2)。
3.指出下列函数零点所在的大致区间
(1)
(2)
最后,师生共同小结(略)。
思考题:函数的零点在区间内有零点,如何求出这个。
零点?设计意图:为下一节“二分法”的学习做准备。
篇2:高中数学说课稿范文
高中数学说课稿范文
各位评委老师:
大家好!我是***,今天我要进行说课的课题是高中数学必修一第一章第三节第一课时《函数单调性与最大(小)值》(可以在这时候板书课题,以缓解紧张)。我将从教材分析;教学目标分析;教法、学法;教学过程;教学评价五个方面来陈述我对本节课的设计方案。恳请在座的专家评委批评指正。
一、教材分析
1、教材的地位和作用
(1)本节课主要对函数单调性的学习;
(2)它是在学习函数概念的基础上进行学习的,同时又为基本初等函数的学习奠定了基础,所以他在教材中起着承前启后的重要作用;(可以看看这一课题的前后章节来写)(3)它是历年高考的热点、难点问题。
(根据具体的课题改变就行了,如果不是热点难点问题就删掉)2、教材重、难点
重点:函数单调性的定义。
难点:函数单调性的证明。
重难点突破:在学生已有知识的基础上,通过认真观察思考,并通过小组合作探究的办法来实现重难点突破。
二、教学目标
1、知识目标:(1)函数单调性的定义;
(2)函数单调性的证明。
2、能力目标:培养学生全面分析、抽象和概括的能力,以及了解由简单到复杂,由特殊到一般的化归思想。
3、情感目标:培养学生勇于探索的精神和善于合作的意识。
(这样的教学目标设计更注重教学过程和情感体验,立足教学目标多元化)
三、教法学法分析 1、教法分析
“教必有法而教无定法”,只有方法得当才会有效。新课程标准之处教师是教学的组织者、引导者、合作者,在教学过程要充分调动学生的积极性、主动性。本着这一原则,在教学过程中我主要采用以下教学方法:开放式探究法、启发式引导法、小组合作讨论法、反馈式评价法。2、学法分析
“授人以鱼,不如授人以渔”,最有价值的知识是关于方法的只是。学生作为教学活动的主题,在学习过程中的参与状态和参与度是影响教学效果最重要的因素。在学法选择上,我主要采用:自主探究法、观察发现法、合作交流法、归纳总结法。
(前三部分用时控制在三分钟以内,可适当删减)
四、教学过程
1、以旧引新,导入新知
通过课前小研究让学生自行绘制出一次函数f(x)=x和二次函数f(x)=x^2的图像,并观察函数图象的特点,总结归纳。通过课上小组讨论归纳,引导学生发现,教师总结:一次函数f(x)=x的图像在定义域是直线上升的,而二次函数f(x)=x^2的图像是一个曲线,在(-∞,0)上是下降的,而在(0,+∞)上是上升的。(适 当添加手势,这样看起来更自然)2、创设问题,探索新知
紧接着提出问题,你能用二次函数f(x)=x^2表达式来描述函数在(-∞,0)的图像?教师总结,并板书,揭示函数单调性的定义,并注意强调可以利用作差法来判断这个函数的单调性。
让学生模仿刚才的表述法来描述二次函数f(x)=x^2在(0,+∞)的图像,并找个别同学起来作答,规范学生的数学用语。
让学生自主学习函数单调区间的定义,为接下来例题学习打好基础。3、例题讲解,学以致用
例1 主要是对函数单调区间的巩固运用,通过观察函数定义在(—5,5)的图像来找出函数的单调区间。这一例题主要以学生个别回答为主,学生回答之后通过互评来纠正答案,检查学生对函数单调区间的掌握。强调单调区间一般写成半开半闭的形式
例题讲解之后可让学生自行完成课后练习4,以学生集体回答的方式检验学生的学习效果。
例2 是将函数单调性运用到其他领域,通过函数单调性来证明物理学的波意尔定理。这是历年高考的热点跟难点问题,这一例题要采用教师板演的方式,来对例题进行证明,以规范总结证明步骤。一设二差三化简四比较,注意要把f(x1)-f(x2)化简成和差积商的形式,再比较与0的大小。
学生在熟悉证明步骤之后,做课后练习3,并以小组为单位找部分同学上台板演,其他同学在下面自行完成,并通过自评、互评检查证明步骤。4、归纳小结
本节课我们主要学习了函数单调性的定义及证明过程,并在教学过程中注重培养学生勇于探索的精神和善于合作的意识。5、作业布置
为了让学生学习不同的数学,我将采用分层布置作业的方式:一组习题组1、2、3,二组习题组2、3、b组1、2。6、板书设计
我力求简洁明了地概括本节课的学习要点,让学生一目了然。
(这部分最重要用时六到七分钟,其中定义讲解跟例题讲解一定要说明学生的活动)
五、教学评价 本节课是在学生已有知识的基础上学习的,在教学过程中通过自主探究、合作交流,充分调动学生的积极性跟主动性,及时吸收反馈信息,并通过学生的自评、互评,让内部动机和外界刺激协调作用,促进其数学素养不断提高。
篇3:高中数学教学案例设计汇编
高中数学教学案例设计汇编
(下部)
19、正弦定理(2) 一、教学内容分析
根据实际教学处理,正弦定理这部分内容共分为三个层次:第一层次教师通过引导学生对实际问题的探索,并大胆提出猜想;第二层次由猜想入手,带着疑问,以及特殊三角形中边角的关系的验证,通过“作高法”、“等积法”、“外接圆法”、“ 向量法”等多种方法证明正弦定理,验证猜想的正确性,并得到三角形面积公式;第三层次利用正弦定理解决引例,最后进行简单的应用。学生通过对任意三角形中正弦定理的探索、发现和证明,感受“观察——实验——猜想——证明——应用”这一思维方法,养成大胆猜想、善于思考的品质和勇于求真的精神。
二、学情分析
对普高高二的学生来说,已学的平面几何,解直角三角形,三角函数,向量等知识,有一定观察分析、解决问题的能力,但对前后知识间的联系、理解、应用有一定难度,因此思维灵活性受到制约。根据以上特点,教师恰当引导,提高学生学习主动性,多加以前后知识间的联系,带领学生直接参与分析问题、解决问题并品尝劳动成果的喜悦。
三、设计思想:
本节课采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以问题为导向设计教学情境,以“正弦定理的发现和证明”为基本探究内容,为学生提供充分自由表达、质疑、探究、讨论问题的机会,让学生通过个人、小组、集体等多种解难释疑的尝试活动,在知识的形成、发展过程中展开思维,逐步培养学生发现问题、探索问题、解决问题的能力和创造性思维的能力。
四、教学目标: 1.让学生从已有的几何知识出发, 通过对任意三角形边角关系的探索,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,实验,猜想,验证,证明,由特殊到一般归纳出正弦定理,掌握正弦定理的内容及其证明方法,理解三角形面积公式,并学会运用正弦定理解决解斜三角形的两类基本问题。
2.通过对实际问题的探索,培养学生观察问题、提出问题、分析问题、解决问题的能力,增强学生的协作能力和交流能力,发展学生的创新意识,培养创造性思维的能力。
3.通过学生自主探索、合作交流,亲身体验数学规律的发现,培养学生勇于探
索、善于发现、不畏艰辛的创新品质,增强学习的成功心理,激发学习数学的兴趣。
4.培养学生合情合理探索数学规律的数学思想方法,通过平面几何、三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。五、教学重点与难点
教学重点:正弦定理的发现与证明;正弦定理的简单应用。教学难点:正弦定理的猜想提出过程。
教学准备:制作多媒体课件,学生准备计算器,直尺,量角器。六、教学过程:
(一)结合实例,激发动机 师生活动: b
教师:展示情景图如图1,船从港口b航行到港口c,测得bc的距离为600m,船在港口c卸货后继续向港口a航行,由于船员的疏忽没有测得ca距离,如果船上有测角仪我们能否计算出a、b的距离?
学生:思考提出测量角a,a 教师:若已知测得?bac?75?,?acb?45?,要计算a、b两地距离,你(图1)
有办法解决吗?
学生:思考交流,画一个三角形a?b?c?,使得b?c?为6cm,?b?a?c??75?,?a?c?b??45?,量得a?b?距离约为,利用三角形相似性质可知ab约为 490m。
老师:对,很好,在初中,我们学过相似三角形,也学过解直角三角形,大家还记得吗?
师生:共同回忆解直角三角形,①直角三角形中,已知两边,可以求第三边及两个角。②直角三角形中,已知一边和一角,可以求另两边及第三个角。教师:引导,?abc是斜三角形,能否利用解直角三角形,精确计算ab呢? 学生:思考,交流,得出过a作ad?bc于d如图2,把?abc分为两个直角三角形,解题过程,学生阐述,教师板书。解:过a作ad?bc于d
ad 在rt?acd中,sin?acb? ac
?ad?ac?sin?acb?600? ? 2
??acb?45?,?bac?75?
??abc?180???acb??acb?60? c d
(图2)
在rt?abd中,sin?abc? ad ab ?ab? ad??
sin?abc教师:表示对学生赞赏,那么刚才解决问题的过程中,若ac?b,ab?c,能否用b、b、c表示c呢?
教师:引导学生再观察刚才解题过程。adad
学生:发现sinc?,sinb? bc
?ad?bsinc?csinb bsinc ?c? sinb
教师:引导,在刚才的推理过程中,你能想到什么?你能发现什么? bsincasincbsina
学生:发现即然有c?,那么也有c?,a?。sinbsinasinb
bsincasincbsina
教师:引导 c?,c?,a?,我们习惯写成对称形式 sinbsinasinb cbcaababc,,因此我们可以发现,????? sincsinbsincsinasinasinbsinasinbsinc是否任意三角形都有这种边角关系呢?
设计意图:兴趣是最好的老师。如果一节课有良好的开头,那就意味着成功的一半。因此,我通过从学生日常生活中的实际问题引入,激发学生思维,激发学生的求知欲,引导学生转化为解直角三角形的问题,在解决问题后,对特殊问题一般化,得出一个猜测性的结论——猜想,培养学生从特殊到一般思想意识,培养学生创造性思维能力。
(二)数学实验,验证猜想
教师:给学生指明一个方向,我们先通过特殊例子检验abc
是否成立,举出特例。?? sinasbinsinc
(1)在△abc中,∠a,∠b,∠c分别为60?,60?,60?,对应的边长a:b:c为1:1:1,对应角的正弦值分别为察 33,,引导学生考222 abc,的关系。(学生回答它们相等)sinasinbsinc(2)、在△abc中,∠a,∠b,∠c分别为45?,45?,90?,对应的 22,1;(学生回22
边长a:b:c为1:1:2,对应角的正弦值分别为
答它们相等)
(3)、在△abc中,∠a,∠b,∠c分别为30?,60?,90?,对应的边长a:b:c为1::2,对应角的正弦值分别为它们相等)(图3)1,1。(学生回答 22 cb
(图3)
教师:对于rt?abc呢?
学生:思考交流得出,如图4,在rt?abc中,设bc=a,ac=b,ab=c, abca 则有sina?,sinb?,又sinc?1?, ccc c abc
则???c b sinasinbsinc abc 从而在直角三角形abc中,?? c sinasinbsinca b(图4)abc
教师:那么任意三角形是否有呢?学生按事先安排分组,?? sinasinbsinc
出示实验报告单,让学生阅读实验报告单,质疑提问:有什么不明白的地方或者有什么问题吗?(如果学生没有问题,教师让学生动手计算,附实验报告单。)
学生:分组互动,每组画一个三角形,度量出三边和三个角度数值,通过实验数 abc
据计算,比较、的近似值。sinasinbsinc abc
教师:借助多媒体演示随着三角形任意变换,、值仍然保持相 sinasinbsinc
等。abc
我们猜想:== sinasinbsinc
设计意图:让学生体验数学实验,激起学生的好奇心和求知欲望。学生自己进行实验,体会到数学实验的归纳和演绎推理的两个侧面。(三)证明猜想,得出定理
师生活动:
教师:我们虽然经历了数学实验,多媒体技术支持,对任意的三角形,如何用数 abc
学的思想方法证明呢?前面探索过程对我们有没有启发?学生?? sinasinbsinc
分组讨论,每组派一个代表总结。(以下证明过程,根据学生回答情况进行叙述)学生:思考得出
①在rt?abc中,成立,如前面检验。
②在锐角三角形中,如图5设bc?a,ca?b,ab?c 作:ad?bc,垂足为d ad ab ?ad?ab?sinb?c?sinb ad
在rt?adc中,sinc? ac
?ad?ac?sinc?b?sinc ?csinb?bsinc cb ??
sincsinb ac
同理,在?abc中,?c b d sinasinc
(图5)abc ???
sinasinbsinc
③在钝角三角形中,如图6设?c为钝角,bc?a,ca?b,ab?c 作ad?bc交bc的延长线于d
ada 在rt?adb中,sinb? ab ?ad?ab?sinb?c?sinb ad
在rt?adc中,sin?acd? ac
?ad?ac?sin?acd?b?sin?acb ?c?sinb?b?sin?acb cb
b ? ?d c
sin?acbsinb
(图6)ac
同锐角三角形证明可知 ? sinasinc abc ???
sinasinbsin?acb
教师:我们把这条性质称为正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即 abc ??
sinasinbsinc
还有其它证明方法吗? 学生:思考得出,分析图形(图7),对于任意△abc,由初中所学过的面积公式可以 111
得出:s?abc?ac?bd?cb?ae?ba?cf,222
bdaecf
而由图中可以看出:,sin?bac?sin?acb?sin?abc? abacbc
在rt?abd中,sinb?
?bd?ab?sin?bac,ae?ac?sin?acb,cf?bc?sin?abc ?s?abc? 111
ac?bd?cb?ae?ba?cf 222