实用智能制造工程实施指南5篇
【请您参阅】下面供您参考的“实用智能制造工程实施指南5篇”是由阿拉网友精心整理分享的,供您阅读参考之用,希望此例范文对您有所帮助,喜欢就复制下载支持一下小编了!
智能制造工程实施指南篇1
现代制造技术
1142813203 吴文乐
摘要:现代制造技术是在传统制造技术的基础上, 不断吸收和发展机械、电子、能源、材料、信息及现代管理技术的成果, 将其综合应用于产品设计、制造、检验、管理服务等产品生命周 期的全过程, 以实现优质、高效、低耗、灵活、清洁的生产技术模式,取得理想的技术经济效果的制造技术的总称传统的自动化生产技术可以显著提高生产效率,然而其局限性也显而易见,即无法很好地适应中小批量生产的要求。随着现代制造技术的发展,特别是自动控制技术、数控加工技术、工业机器人技术等的迅猛发展,柔性制造技术(fmi)应运而生。
关键词:现代制造技术;自动控制技术;柔性制造技术
1.现代制造技术发展综述
现代制造技术在系统论、方法论、信息论和协同 论等的基础上形成制造系统工程学,是一种广义制造的概念,亦称之为“大制造”的概念,它体现了制造概念的扩展。广义制造概念的形成过程主要有以下几方面原因[1]。
1).制造设计一体化。体现制造和设计的密切结合,形成了设计制造一体化,设计不仅是指产品设计,而且包括工艺设计、生产调度设计、质量控制设计等。
2).材料成形机理的扩展。现在加工成形机理明确地将加工分为去除加工、结合加工和变形加工。
3).制造技术的综合性。现代制造技术是一门以 机械为主体,交叉融合光、电、信息、材料等学科的综合体,并与管理科学、社会科学、文化、艺术、人机工 程、生物工程和生命科学等相结合,拓展了新领域。现代制造技术应包括硬件和软件两大方面,硬/软件工具、平台和支撑环境有了很大的发展。
4).产品的全生命周期。制造的范畴从过去的设计、加工和装配发展为产品的全生命周期,包括市场调研、设计、制造、销售、维修和报废处理等。
5).生产制造模式的发展。计算机集成制造技术 是制造技术与信息技术结合的产物,集成制造系统强 调信息集成,其后出现了柔性制造、敏捷制造、虚拟制 造、网络制造、大规模定制、绿色制造、智能制造和协 同制造等多种制造模式,有效地提高了制造技术的水平,扩展了制造技术的领域[2]。
现代制造技术的发展主要沿着“广义制造”或称 “大制造”的方向发展,其具体的发展可以归纳为四个方面和多个大项目[3],如图1所示:
图1:现代制造技术方向
针对现代制造技术,本文从柔性制造技术的角度对现代制造技术进行学习,对柔性制造在实际中的应用进行深入的研究;
2.柔性制造
柔性制造简述
所谓“柔性”,是指制造系统(企业)对系统内部及外部环境的一种适应能力,也是指制造系统能够适应产品变化的能力。柔性可分为瞬时、短期和长期柔性[4]。瞬时柔性是指设备出现故障后,自动排除故障或将零件转移到另一台设备上继续进行加工的能力;短期柔性是指系统在短时期内,适应加工对象变化的能力,包括在任意时期混合进行加工2种以上零件的能力;长期柔性则是指系统在长期使用中,能够加工各种不同零件的能力。迄今为止,柔性还只能定性地加以分析,尚无科学实用的量化指标。因此,凡具备上述3种柔性特征之一的、具有物料或信息流的自动化制造系统都可以称为柔性制造系统。柔性制造技术是计算机技术在生产过程及其装备上的应用,是将微电子技术、智能技术与传统制造技术融合在一起,具有自动化、柔性化、高效率的特点,是目前自动化制造系统的基本单元技术[5]。
柔性制造技术是对各种不同形状加工对象实现程序化柔性制造加工的各种技术的总和[6]。柔性制造技术是技术密集型的技术群,我们认为凡是侧重于柔性,适应于多品种、中小批量(包括单件产品)的加工技术都属于柔性制造技术。目前按规模大小划分为[7]:
(1)柔性制造系统(fms):关于柔住制造系统的定义很多,权威性的定义有:美国国家标准局把fms定义为:“由一个传输系统联系起来的一些设备,传输装置把工件放征其他联结装置上送到各加工设备,使工件加工准确、迅速和自动化。
(2)柔性制造单元(fmc):m s是fms向廉价化及小型化方向发展的一种产物,它是由l~2台加工中心、工业机器人。数控机床及物料运送存贮设备构成,其特点是实现单机柔性化及自动化,具有适应加工多品种产品的灵活性。迄今已进入普及应用阶段。
(3)柔性制造线(fml):它是处于单一或少品种人批量非柔性自动线与中小批量多品种fms之间的生产线。其加工设备可以是通用的加工中心c机床;亦可采用争用机床或nc专用机床,对物料搬运系统柔性的要求低于fms,但生产率更高。它是以离散型生产中的柔性制造系统和连续生过程中的分散型控制系统(d c s)为代表,其特点是实现生产线柔性化及自动化,其技术已日趋成熟,迄今已进入实用化阶段。
(4)柔性制造工厂(fmf):fmf是将多条fms连接起来,配以自动化屯体仓库,用计算机系统进行联系,采用从订货、设计、加工、装配、检验、运送至发货的完整f m s。它包括了cad/cam,并使计算机集成制造系统(cims)投入实际,实现生产系统 柔性化及自动化,进而实现全厂范围的生产管理、产品加工及物料贮运进程的全盘化。fmf是自动化生产的最高水平,反映出世界上最先进的自动化应用技术。它是将制造、产品开发及经营管理的自动化连成一个整体,以信息流控制物质流的智能制造系统(ims)为代表,其特点是实现工厂柔性化及自动化[8]。
柔性制造所采用的关键技术
1.计算机辅助设计未来cad技术发展将会引入专家系统,使之具有智能化,可处理各种复杂的问题。当前设计技术最新的一个突破是光敏立体成形技术,该项新技术是直接利用cad数据,通过计算机控制的激光扫描系统,将二维数字模型分成若干层二维片状图形,并按二维片状图彤对池内的光敏树脂液面进行光学扫描,被扫描到的液面则变成固化塑料,如此循环操作,逐层扫描成形,并自动地将分层成形的各斤状固化塑料粘合在一起,仅需确定数据,数小时内便呵制出精确的原型。它有助于加快开发新产品和研制新结构的速度。
2.模糊控制技术模糊数学的实际应用是模糊控制器。最近开发出的高性能模糊摔制器具有自学习功能,可在控制过程中不断获取新的信息井自动地对控制量作调整,使系统性能大为改善,其中尤其以基于人工神经网络的自学方法更引起人们极大的关注。
3.人工智能、专家系统及智能传感器技术迄今,柔性制造技术中所采用的人工智能大多指基础规则的专家系统。专家系统利用专家知识和推理规则进行推理,求解各类问题(如解释、预测,诊断、查找故障、设汁、计划、监视、修复、命 令及控制等)。由于专家系统能简便地将各种事实及经验证过的理论与通过经验获得的知识相结合,因而专家系统为柔性制造的诸方面工作增强综合性。展望未来,以知识密集为特征,以知识处理为手段的人工智能(包括专家系统)技术必将在柔性制造(尤其智能型)中起着非常重要的关键性的作用。目前对未来智能化柔性制造技术具有重要意义的一个正在急速发展的领域是智能传感器技术。该项技术是伴随计算机应用技术和人工智能产生的,它使传感器具有内在的“决策”功能。
4.人工神经网络技术人工神经网络(ann)是模拟智能生物的神经网络对信息进行并处理的一种方法。故人工神经网络也就是一种人工智能工具。在自动控制领域,神经网络不久将并列到专家系统和模糊控制系统,成为现代自动化系统中的一个组成部分[9]。
3.国内现代制造技术状况
近年来,世界各国都投入了巨大的财力和物力,强化作为光机电一体化制造业基础的先进制造业的技术和产业发展的战略研究。美国、德 国、日 本 等 国 已 经 开 发 出 了 数 控(nc)、计算机数控c)、直接数控(cam)、计算机集成制造系统(cims)、制造资源规则(mrp)、柔性制造单元(tmc)、柔性制造系统(fms)、机器人、计算机辅助设计/制造(cad/cam)、精益生产(lp)、智能制造系统(ms)、并行工程(ce)和敏捷制造(am)等多项现代制造技术与制造模式。这些技术的推广与应用,不仅使本国企业的国际竞争力得到巩固,也使得世界先进制造业发展迅猛[10]。我国制造业市场的巨大潜力,为现代制造技术发展提供了广阔的市场空间。但是,与制造业发达国家和地区相比,国内的现代制造技术的研发与市场拓展还不均衡。其中,国内机械基础件制造行业中的数控化率极低,不足%,先进加工工艺、技术和装备的普及程度不足10 % ;cad/cam 系统应用的普及率在国内骨干企业仅有35%,产业规模较小。另外,在相关行业中如印刷业、电力行业和医疗器械行业等,技术装备的低数控化率也远不能满足市场对中高档先进产品的需求。纵观国际制造业的竞争与发展,面对国际、国内两个制造业市场的日渐融合,如何立足国内制造业的市场需求,整合分散的科研与企业资源,尽快形成自己在先进制造产业竞争中的技术优势,已经是摆在我国制造业面前的迫在眉睫的课题了[11]。
总之,重视制造业和现代制造技术已成为全球化的大趋势。现代制造技术不是一项具体技术,而是利用系统工程技术将各种相关技术集成的一个有机整体;现代制造技术是一种动态技术,而不是一成不变的,它需要不断吸收各种高新技术成果,并将其渗透到产品的所有领域,结合成一个有机整体,实现优质、高效、低耗、清洁和灵活的生产[12];现代制造技术的目的是提高制造业的综合效益,其不摒弃传统技术,而是有赖于不断用科技新手段去研究它和传承它,并应用科技新成果去改造它和充实它;现代制造技术在强调环境保护的同时,还强调各专业学科之间的相互渗透、融合和淡化,并消除其间的界限。我国先进制造技术的发展应结合自身的特点,形成特色,大力发展一些关键前沿技术,比如新一代材料成型技术、微米及纳米技术、快速原型制造以及智能制造等[13]。在不久的将来,现代制造技术将得到更大的发展和壮大,发展和应用先进制造技术是每个国家为提高企业的国际竞争力和技术创新能力的必然选择。
参考文献:
[1]张强.浅谈柔性制造技术的现状及发展[j].技术与市场,2008.(5):39-40.[2]沈向东.柔性制造技术[m].北京:机械工业出版社,[3]吴立.关于柔性制造的研究[j].机床与液压,2010,38(14):9-11.[4]陈琪.制造业企业推行柔性制造的意义及对策[j].企业经济,2005(4):7-8.[5]崔培枝,朱胜,姚巨坤.柔性再制造系统研究[j].机械制造,2003(11):7-9
[6]王隆太,朱灯林,戴国洪.机械cad/cam技术[m].北京:机械工业出版社,2005.
[7]盛晓敏,邓朝辉.先进制造技术[m].北京:机械工业出版社,2003.[8] kai-mo 现代制造技术的发展动向[j]-科技成果管理与研究2008(6).[9]蒋新松.21世纪企业的主要模式一敏捷制造企业[j].计算机集成制造系统一cims,1996,2(4):3—8.
[10]罗振壁,周兆英,汪劲松,等.制造的革新[j].机械工程学报,1995,31(4):31—37.
[11]王永贵.战略柔性与企业高成长.天津:南开大学出版社,2003.67—69.[12]张荣,陈大佑.提升国有大中型企业竞争力的新途径——柔性化管理.当代经济研究.2006.(1):33~35.[13]王先逵.制造工艺核心论[j].世界制造技术与装备市场,2005(3):28—32.
本文地址:http:///zuowen/
智能制造工程实施指南篇2
一、背景
当前,以智能制造为代表的新一轮产业变革迅猛发展,数字化、网络化、智能化日益成为制造业的主要趋势。为加速我国制造业转型升级、提质增效,国务院发布实施《中国制造2025》,将智能制造作为主攻方向,加速培育我国新的经济增长动力,抢占新一轮产业竞争制高点。目前,我国制造业机械化、电气化、自动化、信息化并存,不同地区、不同行业、不同企业发展不平衡,发展智能制造面临关键技术装备受制于人、智能制造标准/软件/网络/信息安全基础薄弱、智能制造新模式推广尚未起步、智能化集成应用缓慢等突出问题。因此,作为一项必须长期坚持的战略任务,推动我国制造业智能转型,环境更复杂、形势更严峻、任务更艰巨。《智能制造工程实施指南(2016一2020年)》明确“十三五”期间同步实施数字化制造普及、智能化制造示范。按照专项行动确定的连续实施三年,2016年要边试点示范、边总结经验、边推广应用的总体安排,继续组织开展智能制造试点示范专项行动。实施智能制造试点示范专项行动,是落实《中国制造2025》以及智能制造工程的重要措施,对于实现制造强国目标具有重要意义。
二、总体思路
贯彻落实《中国制造2025》,推进《智能制造工程实施指南(2016一2020年)》年度计划实施,在总结2015年专项行动经验的基础上,2016年将继续坚持“立足国情、统筹规划、分类施策、分步实施”的方针,进一步扩大行业和区域覆盖面,全面启动传统制造业智能化改造,开展离散型智能制造、流程型智能制造、网络协同制造、大规模个性化定制、远程运维服务5种智能制造新模式的试点示范,继续注重发挥企业积极性、注重智能化持续增长、注重关键技术装备安全可控、注重基础与环境培育,逐步探索与实践有效的经验和模式,不断丰富成熟后在制造业各领域全面推广。
三、主要目标
2016年,在符合两化融合管理体系标准的企业中,在有条件、有基础的重点地区、行业,特别是新型工业化产业示范基地中,遴选60个以上智能制造试点示范项目。通过试点示范,进一步提升高档数控机床与工业机器人、增材制造装备、智能传感与控制装备、智能检测与装配装备、智能物流与仓储装备五大关键技术装备自主化能力,以及智能制造标准、核心软件和工业互联网创新应用能力,形成关键领域一批智能制造标准,不断形成并推广智能制造新模式。智能车间/工厂试点示范项目通过2一3年持续提升,实现运营成本降低20%,产品研制周期缩短20%,生产效率提高20%,产品不良品率降低10%,能源利用率提高10%。
四、重点行动
(一)离散型智能制造试点示范服装、医疗器械、电子信息等离散制造领域,开展智能车间/工厂的集成创新与应用示
范,推进数字化设计、装备智能化升级、工艺流程优化、精益生产、可视化管理、质量控制与追溯、智能物流等试点应用,推动企业全业务流程智能化整合。
(二)流程型智能制造试点示范
在石油开采、石化化工、钢铁、有色金属、稀土材料、建材、纺织、民爆、食品、医药、造纸等流程制造领域,开展智能工厂的集成创新与应用示范,提升企业在资源配置、工艺优化、过程控制、产业链管理、质量控制与溯源、能源需求侧管理、节能减排及安全生产等方面的智能化水平。
(三)网络协同制造试点示范
在机械、航空、航天、船舶、汽车、轨道交通设备、家用电器、集成电路、信息通信产品等领域,选择有条件的企业,利用工业互联网网络等技术,建设网络化制造资源协同平台,集成企业间研发系统、信息系统、运营管理系统,推动创新资源、生产能力、市场需求的跨企业集聚与对接,实现设计、供应、制造和服务等环节的并行组织和协同优化。
(四)大规模个性化定制试点示范
在石化化工、钢铁、有色金属、建材、汽车、纺织、服装、家用电器、家居、数字视听产品等领域,利用工业云计算、工业大数据、工业互联网标识解析等技术,建设用户个性化需求信息平台和个性化定制服务平台,实现研发设计、计划排产、柔性制造、物流配送和售 后服务的数据采集与分析,提高企业快速、低成本满足用户个性化需求的能力。
(五)远程运维服务试点示范
在石化化工、钢铁、建材、机械、航空、家用电器、家居、医疗设备、信息通信产品、数字视听产品等领域,集成应用工业大数据分析、智能化软件、工业互联网联网、工业互联网ipv6地址等技术,建设产品全生命周期管理平台,开展智能装备(产品)远程操控、健康状况监测、虚拟设备维护方案制定与执行、最优使用方案推送、创新应用开放等服务试点。
五、重点工作及进度安排
(一)制定2016年智能制造试点示范项目要素条件
2016年2一3月,组织开展试点示范项目要素条件调研,编制《智能制造试点示范项目要素条件》;4月底前,下发《关于开展2016年智能制造试点示范项目推荐的通知》。
(二)遴选2016年度智能制造试点示范项目
5月底前,在各地工业和信息化主管部门推荐的项目中组织行业专家遴选;6月底前,确定60个以上智能制造试点示范项目,其中:选择20个以上离散型智能制造试点示范项目,选择20个以上流程型智能制造试点示范项目,选择20个以上网络协同制造、大规模个性化定制、远程运维服务试点示范项目。
(三)完成智能制造发展对策研究
2016年6月底前,组织相关单位完成“智能制造发展对策研究”重大软科学课题,进一步完善促进智能制造发展的相关政策。
(四)启动并组织实施重点领域智能化改造工作 2016年2一12月,利用工业转型升级资金、专项建设基金,在石油化工、化工园区、钢铁、有色金属、稀土材料、建材、船舶、航空、汽车、电力装备、机床、纺织、食品、医药、轻工、消费类电子、新型显示高世代线、太阳能电池及光伏组件、民爆等行业,持续开展重点企业关键环节、生产线、车间、工厂的智能化改造,培育一批系统解决方案供应商,形成智能化标准与模式并进行复制推广。
(五)开展工业互联网产业推进工作
2016年2一12月,组织企业在工业以太网、工厂无线应用、标识解析、ipv6应用、工业云计算、工业大数据等领域开展创新应用示范,支持相关单位开展工业互联网试验验证平台、工业互联网关键资源管理平台和工业互联网商用流转数据管理平台建设。
(六)开展智能制造网络安全保障能力建设
2016年6月底前,完成工业互联网安全监测平台、工控网络安全防御平台、工业控制系统仿真测试与验证平台等项目立项论证;12月底前开展关键技术预先研究。
(七)开展智能制造标准体系建设
2016年5月,召开中德智能制造/工业标准化高端论坛;11月底前完成智能制造标准试验验证项目的立项工作,下达智能制造标准编制立项,形成10项以上重点标准草案。
(八)开展智能制造经验交流与推广工作
2016年9月底前,组织召开2016年全国智能制造试点示范经验交流电视电话会议;10一12月,组织开展原材料、装备、消费品、电子、民爆行业典型案例经验交流与模式推广;12月底前,编制完成《智能制造探索与实践一一2016年试点示范项目汇编》。
(九)组织智能制造试点示范项目集中展示业博览会上设专区,集中展示智能制造试点示范项目取得的成果。
(十)开展专项行动年度评估与总结
2016年11月,完成专项行动年度检查与效果评估,完成专项行动工作总结。
六、保障措施
智能制造工程实施指南篇3
智能制造综述
冯剑龙 1043115257 摘要
本文评述了智能制造技术与智能制造系统,指出了智能制造确系21世纪的制造技术,分析了智能制造在发展中的问题,提出我国智能制造的近期研究重点应为其关键基础技术。
关键词智能制造智能制造技术智能制造系统智能机器 集成化智能化 智能制造系统的研究背景与发展现状
近来年,人们对制造过程的自动化程度赋予了极大的研究热情,这是因为从1870年到1980年间,制造过程的效率提高了20倍,而生产管理效率只提高了~倍,产品设计的效率只提高了倍。这表明体力劳动通过采用自动化技术得到了极大的解放,而脑力劳动的自动化程度(其实质是决策自动化程度)则很低,制造过程中人的因素尚未得到充分的认识,人尚未真正地从复杂的生产过程中解放出来,各种问题求解的最终决策在很大程度上仍依赖于人的智慧。因而,人类群体所面临的众多问题(包括社会问题、生理问题等)在制造过程中都有所反映。面对批量小、品种多、质量高、更新快的产品市场竞争要求以及各种社会因素的综台影响.制造过程的自动化程度的提高面临众多问题,譬如;(1)专家人才的短缺和转移致使一些专门技能不能及时或长久地得到提供;(2)现代制造过程中信息量大而繁杂,传统的信息处理方式已不能满足要求,大量的信息资源需要开发与共享;(3)制造环境柔性要求更大,决策过程更加复杂,决策时问要求更短。各种迹象表明,“我们正处在制造历史上的一个危险时期” 幸运的是,计算机与计算机科学以及其它高技术的发展,通过集成制造技术、人工智能等而发展起来的一种新型制造工程—— 智能制造技术(intelligent manufacturing technology,imt)与智能制造系统(inteliigent manufacturingsystem,ims)使我们有可能走出这个危机,“带来真正的第二次工业革命”。这是因为,制造过程所面临的众多问题的核心是“制造智能(nlanufacturing iteliigence)”和制造技术的“智能化(intellecturallzation)。imt是指在制造工业的各个环节以一种高度柔性与高度集成的方式,通过计算机模拟人类专家的智能活动,进行分析、判断、推理、构思和决策,旨在取代或延伸制造环境中人的部分脑力劳动;并对人类专家的制造智能进行收集、存贮、完善、共享、继承与发展。未来工业生产的基本特征应该是知识密集型.制造自动化的根本是决策自动化。目前,imt~ims的研究正迅速受到众多国家的政府、工业界和科学家们的广泛重视,研究方向从最初的“人工智能在制造领域中的应用”发展到今天的ims,研究课题涉及的范围由最初仅一个企业内部的市场分析、产品设计、生产计划、制造加工、过程控制、材料处理、信息管理、设备维护等技术型环节的自动化.发展到今天的面向世界范围内的整个制造环境的集成化与自组织能力+包括制造智能处理技术、自组织加工单元、自组织机器人、智能生产管理信息系统、多级竞争式控制网络、全球通讯与操作网等。总之,智能制造是21世纪的制造技术,作为其特征的双i(integration& intelligence)将是21世纪制造业赖以行进的基本轨道。从更深刻的意义上讲,智能制造是从信息时代走向智能时代面临的第一个严重任务。存在的问题
总的说来,目前ims的研究仍处在人工智能在制造领域中应用的阶段,研究课题涉及到市场分析、产品设计、制造过程控制、材料处理、信息管理、设备维护等众多方面,取得了丰硕的成果.开发了种类繁多的面向特定领域的专家系统、基于知识的系统和智能辅助系统,甚至智能加工工作站(imw),形成了一系列“智能化孤岛”(islands of intelligence)。这中间包括cims研究中所取得的有关进展然而,随着研究与应用工作的深入,人们逐渐地认识到自动化程度的进一步提高依赖制造系统的自组织能力,研究工作还面临着一系列理论、技术和社会问题,问题的核心是“智能化”。一般说来,现代工业生产作为一个有机的整体要受技术(包括生产系统)、人(包括间接影响生产过程的社会群体)和经济(包括市场竞争和社会竞争)-方面因素的制约。从技术的角度来看,对于一个企业来说,市场预测、生产决策、产品设计、原料订购与处理、制造加工、生产管理、原料产品的储运、产品销售、研究与发展等环节彼此相互影响,构成产品生产的全过程。该过程的自动化程度取决于各环节的集成自动化(integrated automatlon)水平,而生产系统的自组织能力取决于各环节的集成智能(inte—grated intelligence)水平。目前,尚缺乏这种“集成”制造智能的技术,这也是目前“并行工程”的研究重点。由日本提出的国际合作研究计划对ims的解释可看出,ims的研究包括三个基本方面:智能活动、智能机器和两者的有机融合技术,其中智能活动是问题的核心。在ims研究的众多基础技术中.制造智能处理技术(manufacturing in—telligence processing technology)是最为关键和追切需要研究的问题之一,因为它负责各环节的制造智能的集成和生成智能机器的智能活动。从人的因素方面来看,其一,企业内部负责各个环节的专家和技术人员有着各自不同的知识背景和解决问题的策略,他们应该“坐”在一起,通过相互之间充分的合作、协商与理解,“并行”地开睫制造过程中各环节的工作,把以后可能出现的“隐患”和“反复”降低到最低程度。其二,人们参与制造过程的智能行为和知识存在着多种层次水平、多种类型。因而要采用多种表示方式。其三,参与制造过程的群体,作为社会中的一子集,受社会发展变更的影响,这种影响都将对制造过程产生既有积极又有消极的作用 最后.人与人之间存在生活、语言、社会背景等方面的差别。总之,人的因素对现代生产的自动化程度有着关键作用。事实证明,人的因素是ims中制造智能的重要来源。从经济因素来看,它包括三个方面:第一,ims系统的主要目标之一是全面提高制造过程的生产与经济效益,它将把制造过程自动化的概念更新和拓宽到“集成化”和“智能化”的高度,从而具有更强的市场竞争能力 但如何设定和评价ims的各项经济性指标和性能则是一个问题。第二,目前,在工业发达国家普遍存在着劳动力昂贵,所占生产成本的比例越来越高的问题。从当前的经济利益出发,大量的制造企业被转移至发展中国家,致使生产技术和劳动者因素等方面受到牵制,存在丧失他们产品市场竞争力的危险这也是智能制造国际合作研究计划提出的重要原因之一。方向与课题
根据国内现有的工作基础和国家的需要,以及imt&ims研究与开发工作的特点,我们认为近期的研究点应该放在imt&ims的关键基础技术上,它主要包括以下内容:
智能制造系统理论基础与设计技术ims的概念正式提出至今仅二三年时间。作为制造工程中的一个全新的概念,ims理论基础与体系尚未完全形成.它的精确内涵和设计技术亟待进一步研究,具体研究内容应包括:
体系结构与发展战略 需要建立ims统一的概念体系,研究ims的系统组成和发展方向以及跟踪国际上该领域的研究前沿
开发环境与设计方法学ims的开发与设计方法将有别于现有任何制造系统的设计方法,因为ims是面向整个制造过程的系统和各个环节的“智能化”的 因此.有必要研究ims的设计策略和开发环境(包括开发语言、操作系统、开发工具等)必须强调ims设计过程的标准化、模块化和通用化。
评价技术研究制造过程中的设计评价、生产评价、材料评价、管理评价、市场评价、经济评价、报价评价和功能评价等问题。
制造智能理论及处理技术现代工业生产作为一个有机整体不仅是指各制造环节之间存在的技术型联系,而且还表现在人类专家的制造智能的统一体特性方面。制造智能理论及处理技术就是要研究整个制造环境中的各种智能源的开发、描述、集成、共享与处理,最后生成智能机器的智能活动,具体研究内容包括: 制造环境的描述与建模研究描述制造环境的一致性概念体系、制造过程建模,影响制造过程的多因素分析与不确定性处理。
制造智能处理技术重点研究制造智能源的开发与获取、制造智能的表示、制造智能的集成与共享
智能活动的生成与融合研究智能活动的生成策略,智能活动的机器化技术。 智能制造单元技术的集成近10年来,人工智能在制造领域中的应用研究取得较大进展,建立了一些智能制造单元技术。为了应用于实际制造过程和面向21世纪制造工业,这些单元技术除了需要进一步完善与发展外,更重要的是研究如何集成这些单元技术。
并行智能设计并行工程方法学这一概念是1986年由美国国防部定义,并首先应用于美国军事武器系统开发计剞dos cals的。.为了制造过程的设计阶段能有效地模仿由来自各环节制造专家组成的专家组(expeit team)的智能行为,集成和共享各环节与各方面的制造智能,并行地开展产品环节的设计工作,必须研究并行智能设计的支撑环境、产品描述的统一模型、设计智能交互和并行智能设计方法学。
生产过程的智能调度、规划、仿真与优化现代生产过程要面临多信息源、多因素、多对象的及时处理问题,生产过程的调度与规划中的智能决策问题的研究是迫在眉睫的。仿真与优化是实现设计和过程评估的有效途径。目前,更强调对设计、制造、装配、使用、维修等过程的优化与动态仿真。 产品质量信息的智能处理系统研究整个制造过程的“全质量(total quality)模型和建立相应的质量数据库,研究质量状态的智能决策和质量过程的智能控制. 制造过程与系统的智能监视、诊断、补偿与控制研究面向在强干扰、多因素条件下监视与诊断模型,研究制造过程的动态辨识与自适应技术。
生产与经营管理的智能决策系统研究多因素、多目标智能决策模型,研究生产过程的实时跟踪技术,研究产品市场评估与预测模型。
知识库系统与网络技术知识库系统与信息网络技术是制造过程的系统与各环节“集成智能化”的支撑,在imt&ims研究中占有重要地位。
分布式异构联想知识库系统研究知识库异构、知识库分布式策略与维修、知识库联想和分布数据库技术。
信息控制与网络通讯技术研究ims中各种信息的交换接el、网络通讯技术、系统操作控制策略。
智能机器的设计智能机器是ims中模仿人类专家智能活动的工具之一,是新一代的制造工具,因而,研究智能机器的设计方法及其相关技术将有划时代的意义。
机器人智能技术智能机器人将在ims中占有重要的地位,主要体现在机器的视觉和机器^控制两个方面。有必要研究智能机器眼(视觉)、信息感知与智能传感器、智能机器手(控制)和智能机器的自适应定位与夹具设计等技术。
机器自学习与自维护技术研究智能机器的自适应学习模型,系统误差的自动恢复与维护技术。
智能制造单元机的设计与制造研究智能制造单元机的结构组成与设计方法、新型材料的应用技术。
制造中人的因素ims的宗旨之一就是减轻人类制造专家的艰苦的脑力劳动负担,因此.与脑力劳动有密切联系的制造中人的因素理应受到充分的重视,研究内容包括:
人一系统柔性交互技术研究人一系统柔性、联想、容错交互模型以及交互环境。3 未来制造环境的设计研究人在未来制造环境中的地位和作用以及未来舒适、友好的制造环境的设计。
人才培养与教学系统研究面向imt&ims的^才培养计划.研制教学示范系统。
智能制造工程实施指南篇4
智能工厂——以三一重工18号工厂为例
摘要:在理论上解释了智能工厂的概念,再以三一重工18号工厂作为研究对象,对其运作方式、运作特点进行了较为详细地分析与讨论,从而得出工厂的智能化基因。并且进一步得出了智能工厂的框架,为系统化建设智能工厂打下了基础。关键词:物联网;智能制造;数字化工厂 中图分类号:th161
intelligent factory a case of sany heavy industry factory
abstract:this paper explains the concept of intelligent factory in theory, then takes 31 heavy industry factory as the research object, analyzes and discusses its operation mode and operation characteristics in detail, thus obtains the intellectualized gene of the further draws the intelligent factory frame, lays the foundation for the systematized construction intelligent words:networking of things;intelligent manufacturing;digital chemical plant 0 前言
随着物联网、大数据和移动应用等新一轮信息技术的发展,全球化工业革命开始提上日程,工业转型开始进入实质阶段。在中国,智能制造、中国制造2025等战略的相继出台,表明国家开始积极行动起来,把握新一轮工发展机遇实现工业化转型。智能工厂作为工业智能化发展的重要实践模式,已经引发行业的广泛关注。到底什么是智能工厂?智能工厂的核心架构是怎样的?能为企业的转型提供哪些支撑?这都是企业比较关心的话题。
本文以三一重工18号工厂为例,分析智能工厂的主要特点还有其智能化的框架。数字化工厂、智能工厂和智能制造
数字化工厂
对于数字化工厂,德国工程师协会的定义是:数字化工厂(df)是由数字化模型、方法和工具构成的综合网络,包含仿真和3d/虚拟现实可视化,通过连续的没有中断的数据管理集成在一起。数字化工厂集成了产品、过程和工厂模型数据库,通过先进的可视化、仿真和文档管理,以提高产品的质量和生产过程所涉及的质量和动态性能:
图1 在国内,对于数字化工厂接受度最高的定义是:数字化工厂是在计算机虚拟环境中,对整个生产过程进行仿真、评估和优化,并进一步扩展到整个产品生命周期的新型生产组织方式。是现代数字制造
技术与计算机仿真技术相结合的产物,主要作为沟通产品设计和产品制造之间的桥梁。从定义中可以得出一个结论,数字化工厂的本质是实现信息的集成。
智能工厂
智能工厂是在数字化工厂的基础上,利用物联网技术和监控技术加强信息管理服务,提高生产过程可控性、减少生产线人工干预,以及合理计划排程。同时,集初步智能手段和智能系统等新兴技术于一体,构建高效、节能、绿色、环保、舒适的人性化工厂。
图2
智能工厂已经具有了自主能力,可采集、分析、判断、规划;通过整体可视技术进行推理预测,利用仿真及多媒体技术,将实境扩增展示设计与制造过程。系统中各组成部分可自行组成最佳系统结构,具备协调、重组及扩充特性。已系统具备了自我学习、自行维护能力。因此,智能工厂实现了人与机器的相互协调合作,其本质是人机交互。
智能制造
智能工厂是在数字化工厂基础上的升级版,但是与智能制造还有很大差距。智能制造系统在制造过程中能进行智能活动,诸如分析、推理、判断、构思和决策等。通过人与智能机器的合作,去扩大、延伸和部分地取代技术专家在制造过程中的脑力劳动。它把制造自动化扩展到柔性化、智能化和高度集成化。
智能制造系统不只是“人工智能系统,而是人机一体化智能系统,是混合智能。系统可独立承担分析、判断、决策等任务,突出人在制造系统中的核心地位,同时在智能机器配合下,更好发挥人的潜能。机器智能和人的智能真正地集成在一起,互相配合,相得益彰。本质是人机一体化。
国内很多企业都在炒作智能制造,但是绝大多数企业还处在部分使用应用软件的阶段,少数企业也只是实现了信息集成,也就是可以达到数字化工厂的水平;极少数企业,能够实现人机的有效交互,也就是达到智能工厂的水平[1]。
图3 2 从大厂房到智能工厂
在全球科技革命的大背景下,工程机械行业作为多品种、中批量、按订单生产的离散型技能密集型产业,要想向高端制造发展,必须依靠信息化建立先进的制造和管理系统[2]。
三一重工作为重工领域的标杆,其18号厂房成为应用基础的示范。这间总面积约十万平方米的车间,成为了行业内亚洲最大最先进的智能化制造车间。在这里,厂房更像是一个大型计算系统加上传统的操作工具、大型生产设备的智慧体。 18号厂房的“智慧”运转
18号厂房是三一重工总装车间,有混凝土机械、路面机械、港口机械等多条装配线,是工程机械领域内颇负盛名的智能工厂。
在18号厂房,厂区旁边有两块电视屏幕,它们是一线工人的“老师”——不熟悉装配作业的工人,通过电子屏幕里的数字仿真和三维作业指导,可以学习和了解整个装配工艺[3]。三一重工的三维作业现场指导模式,成为了著名3d技术开发公司达索的全球最佳案例。
厂房更像是一个大型计算系统加上传统的操作工具、大型生产设备的智慧体,每一次生产过程、每一次质量检测、每一个工人劳动量都记录在案。装配区、高精机加区、结构件区、立库区等几大主要功能区域都是智能化、数字化模式的产物[4]。
当有班组需要物料时,装配线上的物料员就会报单给立体仓库,配送系统会根据班组提供的信息,迅速找到放置该物料的容器,然后开启堆高机,将容器自动输送到立体库出库端液压台上。此时,agv操作员发出取货指令,agv小车自动行驶至液压台取货[5]。取完货后,采用激光引导的agv小车,将根据运行路径沿途的墙壁或支柱上安装的高反光性反射板的激光定位标志,计算出车辆当前的位置以及运动的方向,从而将物料运送至指定工位。像这样的agv小车,在三一重工18号厂房有15台。
从大厂房到智能工厂,实施智慧化改造后,18号厂房在制品减少8%,物料齐套性提高14%,单台套能耗平均降低8%,人均产值提高24%,现场质量信息匹配率100%,原材料库存降低30%。2014年,18号厂房同比节约制造成本1亿元,年增加产量超过2000台以上,每年同比产值新增60亿元以上。此外,高精加工区也是18号厂房的特色之一。整个机加区集智能化、柔性化、少人化于一体,可以满足多品种、小批量生产要求。
智能背后的生产模式进化
2013年8月,三一重工集团启动新一轮制造变革。在大会上,三一重工董事长梁稳根这样描绘三一重工制造体系的蓝图:“所有结构件和产品都在很精益的空间范围内制造,车间内只有机器人和少量作业员工在忙碌,装配线实现准时生产,物流成本大幅降低,制造现场基本没有存货。”
制造模式的生产方式分散且独立,需要大量的人力物力予以配合,才能完成产品的生产制造,这使得生产效率低下的同时,生产成本还居高不下。因此三一重工开始借助信息化,在生产车间导入自动化制造模式。“部件工作中心岛”就是这样一个尝试。
所谓“部件岛”,即单元化生产,将每一类部件从生产到下线所有工艺集中在一个区域内,犹如在一个独立的“岛屿”内完成全部生产,故称为部件岛,将装配行业中“岛”的概念引入到结构件生产中,这是三一重工重机制造人员的首创。三一重工:智能工厂实践
三一重工18号厂房是亚洲最大的智能化制造车间,有混凝土机械、路面机械、港口机械等多条装配线,是三一重工总装车间。2008年开始筹建,2012年全面投产,总面积约十万平方米。从2012年开始,以三一18号厂房为应用基础,由三一重工、湖大海捷、华工制造、华中科大等单位联合申报的“工程机械产品加工数字化车间系统的研制与应用示范项目”.经过3年精心建设,目前,三一已建成车间智能监控网络和刀具管理系统、公共制造资源定位与物料跟踪管理系统、计划、物流、质量管控系统、生产控制中心(pcc)中央控制系统等智能系统,完成了国家批复的项目建设内容[6]。
图4 同时,三一还与其他单位共同研发了智能上下料机械手、基于dnc系统的车间设备智能监控网络、智能化立体仓库与agv运输软硬件系统、基于rfid设备及无线传感网络的物料和资源跟踪定位系统、高级计划排程系统(aps)、制造执行系统(mes)、物流执行系统(les)、在线质量检测系统(spc)、生产控制中心管理决策系统等关键核心智能装置,实现了对制造资源跟踪、生产过程监控,计划、物流、质量集成化管控下的均衡化混流生产,智能化功能和系统性能指标达到国家批复要求[7]。
智能加工中心与生产线
智能化加工设备
早在2007年,有“智能化机械手”之称的焊接机器人现身三一挖机生产线,并在2008年后得到进一步推广。2012年三一重工在上海临港产业园建成全球最大最先进的挖掘机生产基地,焊接机器人大规模投入使用,大幅提升了产品的稳定性,使得三一挖掘机的使用寿命大约翻了两番,售后问题下降了四分之三。由于规范了管理,又进一步提升了整个生产体系的效率。不但如此,机器人的使用减少了工人数量,管理模式的重心从原来的管人转移
到了管理设备上,相对而言,管理设备要容易很多。
智能刀具管理
在实际加工中,有多种因素会对加工刀具产生影响,首先是加工工件本身的因素,如加工工件材质、结构型式、工件刚度等对刀具使用效果影响较大。其次是加工工装,定位基准、压紧方式、结构型式以及工装刚度等都会影响刀具使用效果。再次加工工艺方案,如加工顺序、切削三要素(切深、进给、切削速度)对刀具使用效果影响更大。最后是加工机床,设备的切削功率、设备的刚度、设备的结构型式、切削冷却介质对加工刀具发挥效率也有很大影响[8]。
三一在实践中,要充分考虑刀具寿命和加工工件成本的关系,根据不同结构的工件选择不同的刀具,包括刀具材料(分整体硬质合金、焊接硬质、高速钢等)、刀具结构(分机夹刀片、焊接刀片和整体材料刀具)以及刀具装夹方式(热装式、强力紧固式、侧固式)等。有的刀具选择涂层刀片来增加刀具的耐用度,延长刀具寿命。在高速加工时,对刀具动平衡也有要求,我们配备了刀具动平衡仪,并在加工成本允许的前提下选择耐用度较高的刀具。
dnc
dnc是计算机与具有数控装置的机床群使用计算机网络技术组成的分布在车间中的数控系统。该系统对用户来说就像一个统一的整体,系统对多种通用的物理和逻辑资源整合,可以动态的分配数控加工任务给任一加工设备,是提高设备利用率,降低生产成本[9]。
图5
目前,三一重工已经完成车间机加设备的研发采购与安装调试,部分完成智能上料机械手、dnc实时监控装置及刀具管理系统的购置和开发。 智能化立体仓库和物流运输系统
智能化立体仓库
立体仓库后台运作的自动化配送系统由华中科大与三一联合研制,通过这套系统,三一打造了批量下架、波次分拣,单台单工位配送模式,实现了从顶层计划至底层配送执行的全业务贯通,大大提高了配送效率及准确率,准时配送率超95%。
三一智能化立体仓库总投资6000多万元, 分南北两个库,由地下自动输送设备连成一个整体,总占地面积9000平方米,仓库容量大概是16000个货位。从南边仓库可以看到,这个库区有几千种物料,主要是泵车、拖泵、车载泵物料,能支持每月数千台产品的生产量。
从大厂房到智能工厂,实施智能化改造后,18号厂房在制品减少8%,物料齐套性提高14%,单台套能耗平均降低8%,人均产值提高24%,现场质量信息匹配率100%,原材料库存降低30%,2014年18号厂房预计同比节约制造成本1亿元,年增加产量超过2000台以上,每年同比产值新增60亿元以上。 agv智能小车
智能化立体仓库的核心是agv智能小车,当有班组需要物料时,装配线上的物料员就会报单给立体仓库,配送系统会根据班组提供的信息,迅速找到放置该物料的容器,然后开启堆高机,将容器自动输送到立体库出库端液压台上。此时,agv操作员发出取货指令,agv小车自动行驶至液压台取货。取完货后,由于agv小车采用激光引导,小车上安装有可旋转的激光扫描器,在运行路径沿途的墙壁或支柱上安装有高反光性反射板的激光定位标志,agv依靠激光扫描器发射激光束,然后接受由四周定位标志反射回的激光束,车载计算机计算出车辆当前的位置以及运动的方向,通过和内置的数字地图进行对比来校正方位,从而将物料运送至指定工位。像这样的agv小车,在三一18号厂房有15台。在18号厂房南北智能化立体仓库,不仅有这样的agv自动小车,其后台配送也是自动化系统完成的。
图6
公共资源定位系统
公共资源定位系统是三一重工智能工厂的一个重要支撑。公共资源定位系统能实现包括对设备定位和状态检测、人员定位以及故障实时处理与报警等功能。通过公共资源定位监控中心,三一重工的生产管理人员能及时的了解生产车间的人员位置、设备位置和状态、加工生产情况,并及时的指导生产和进行故障处理等操作。
智能化生产执行过程控制
高级计划排程
在考虑企业资源所提供的可行物料需求规划与生产排程计划,让规划者快速结合生产限制条件与相关信息(如订单、途程、存货、bom与产能限制等),以做出平衡企业利益与顾客权益的最佳规划与决策,满足顾客需求及面对竞争激烈的市场。强化了erp系统中以传统mrp规划逻辑为主的生产规划与排程的功能,aps 系统的同步规划能力,不但使得规划结果更具备合理性与可执行性,亦使企业能够真正达到供需平衡的目的[10]。
执行过程调度
三一车间内一排排的mes终端机,生产线上明亮的led屏幕,整齐划一的醒目安全灯是系统给我们带来直观的印象。sanymes系统是指由三一集团it总部自主研发的制造执行系统,它充分利用信息化技术,从生产计划下达、物料配送、生产节拍、完工确认、标准作业指导、质量管理、关重件条码采集等多个维度进行管控,并通过网络实时将现场信息及时准确地传达到生产管理者与决策者[11]。该
系统除了通过各种方式如短信、邮件向管理者传递生产信息外,其设置在生产现场的mes终端机,给一线工人生产制造带来了极大的便利。
通过mes终端机,生产线工人不仅可以及时报完工、方便快捷地查询物料设计图纸和库存情况,更重要的是sanymes终端机可以正确地指导工人每个工位如何进行安装、安装时候需要哪些零部件,同时给予安全提示。有了mes系统后,再也不用去借图纸,直接在mes终端就能查到最新的图纸信息,数字化质量检测
目前,三一在质检信息化方面,通过gsp、mes、csm及qis的整合应用,实现涵盖供应商送货、零件制造、整机装配、售后服务等全生命周期的质检电子化,并实现了spc分析、质量追溯等功能。
以前质检,是采用纸质记录本记录检验结果和全触摸屏操作,简单方便,而且通过查看标准作业指导以规范工人的操作,避免了纸质作业指导书的损坏和更新不及时造成的附加作业,极大提高了工作效率和作业质量[12]。 数字化物流管控
三一自动化立体仓储配送系统实现了该公司泵车、拖泵、车载泵装配线及部装线所需物料的暂存、拣选、配盘功能,并与agv配套实现工位物料自动配送至各个工位。
根据泵车、拖泵、车载泵装配线及部装线在车间的位置,北自所设计了两个库区,1#库负责泵车物料的储存、拣配功能,2#库负责拖泵、车载泵物料的储存、拣配功能,两个库区共用一个设置1#库区的入库组盘区域,2#库入库的物料在入库组盘区完成组盘后通过地下输送通道自动输送进入2#库库区存储。
仓储模式采用自动化立体仓库存储(主要储存中小件为主)+垂直升降库存储(主要储存小件为主)+平面仓库储存(主要储存大件等其他特殊物资)。自动化立体仓库和垂直升降库的数据采用一套软件进行统一管理,集中配送。通过垂直升降库的应用,解决了将近总量30%的物料种类的储存和出入库作业模式,很大程度地缓和了自动化立体仓库的出入库作业压力,有效地提高了整个系统的作业能力。
拣配模式采用提4台套提前一班(8小时)拣配模式,按照工位进行配送。在两个库区分别设置了两层的配盘区域,根据装配工位数量及各工位装配物料情况,对配盘区域的拣配托盘位置进行分配,拣配过程中采用led显示屏+rf手持终端模式进行人工作业。北自所根据各工位装配物料情况,配合用户设计了多种不同的配送容器,采用多层存放,提高容器使用效率,减少线边容器数量,最终提高了agv系统的搬运效率。
质量问题,现在则是用生产管理系统(mes),每一个检验项目都标准化、电子化,以前在本子上的内容都作为数据录入pda和平板电脑等终端。一旦发现质量异常,系统就会第一时间自动启动不合格处理流程,将情况发送给相关责任人。“在不合格品控制流程中的隔离、评审等6个环节,保证每道工序的每个产品在下一道工序前合格。”而数据的录入则会为产品质量追溯提供可靠依据。三一的自制件可以具体查到是某台产品零部件,制作时间、制作地点和工位、制作人、制作条件等信息,供应商提供的零部件则是可以查到批次和反馈。
智能化生产控制中心
中央控制室
1.生产计划及执行情况、设备状态、生产统
计图;
2.智能计划系统操作界面;
3.生产现场监控、看板展示及异常报警; 4.各区域监控信息;
5.设计部日常操作(支持10路信号同时切
入);
6.各区域监控信息;
7.物流部日常操作(支持10路信号同时切
入);
8.质量部日常操作(支持10路信号同时切
入)。
现场监视装置
全方位的工厂车间监控系统能实现对生产过
程的全面监控和记录,保证生产现场的安全,以及现场事故的追溯和回放。 现场andon andon系统能够为操作员停止生产线提供一套新的、更加有效的途径。在传统的汽车生产线上,如果发生故障,整条生产线立即停止。采用了andon系统之后,一旦发生问题,操作员可以在工作站拉一下绳索或者按一下按钮,触发相应的声音和点亮相应的指示灯,提示监督人员立即找出发生故障的地方以及故障的原因。一般来说,不用停止整条生产线就可以解决问题,因而可以减少停工时间同时又提高了生产效率。
andon系统的另一个主要部件是信息显示屏。每个显示面板都能够提供关于单个生产线的信息,包括生产状态、原料状态、质量状况以及设备状况。显示器同时还可以显示实时数据,如目标输出、实际输出、停工时间以及生产效率。根据显示器上提供的信息,操作员可以更加有效的开展工作。智能工厂理念
所谓“六维智能理论”,就是在设备联网+远程数据采集的基础上,实现智能化的生产过程管理与控制,从6个方面打造适合中国国情的智能工厂。 行业背景
“工业”被认为是以智能制造为主导的第四次工业革命或是工业体系革命性的生产方法,而智能工厂将是构成未来工业体系的一个关键特征。在智能工厂里,人、机器和资源如同在一个社交网络里自然地相互沟通协作,生产出来的智能产品能够理解自己被制造的细节以及将如何使用,能够回答“哪组参数被用来处理我”、“我应该被传送到哪里”等问题。同时,智能辅助系统将从执行例行任务中解放出来,使他们能够专注于创新、增值的活动;灵活的工作组织能够帮助工人把生活和工作实现更好地结合,个体顾客的需求将得到满足。德国工业、美国ge工业互联网均是“工业”的典范,但中国有自己特殊的国情,中国制造企业打造智能工厂,不能完全照搬国外模式,而是既要紧跟国际先进理念,还要符合中国企业的实际情况[13]。
概念内涵
美国与德国的工业发展战略核心均为cps(cyber-physical system)系统,是典型的二元战略。美国是c(cyber,包括:数字、信息、网络等虚拟世界)+p(physical,包括机器、设备、设施等实体世界),德国是p+c,两国均是基于高素质劳动者、国家人力匮乏、企业高协同化、高法制化的基础之上而提出的战略;而中国装备水平较美国和德国有一定差距,数据采集分析决策能力也有局限,但中国具有人力资源优势,所以应该充分挖掘人的作用。因此,中国制造企业推进工业发展不能完全照搬发达国家的二元战略,更宜采用cpps(cyber-person-physical system)人机网三元战略,充分体现人的能动作用。
图7
所谓“三元战略”,包括劳动者及其技能、素养、精神、组织、管理等,cpps战略体现了以人为本,继续发挥与挖掘了中国在人力资源方面的优势,扬长补短,实现人与赛博、物理虚实两世界的融合和迭代发展,构建以赛博智能为目的的人机网三元战略方案更符合中国国情[14]。
所谓“六维智能理论”,就是在设备联网+远程数据采集的基础上,实现智能化的生产过程管理与控制,从6个方面打造适合中国国情的智能工厂,这6个方面包括:
1.智能计划排产,是从计划源头上集成erp,进行aps高级排产。
2.智能生产协同,从生产准备过程上,实现
物料、刀具、工装、工艺的并行协同准备。3.智能的设备互联互通,是cps信息物理系
统的典型体现,实现数字化生产设备的分布式网络化通讯、程序集中管理、设备状
态的实时监控等。4.智能资源管理,包括对物料、设备、刀具、量具、夹具等生产资源进行精益化管理、库存智能预警等。
5.智能质量过程管控,是对影响产品质量的生产工艺参数进行实时采集、控制,确保产品质量。
6.智能决策支持,是基于大数据分析的决策支持,形成管理的闭环,以实现数字化、网络化、智能化的高效生产模式。
总之,通过以上6个方面智能的打造,可极大提升企业的计划科学化、生产过程协同化、生产设备与信息化的深度融合,并通过基于大数据分析的决策支持对企业进行透明化、量化的管理,可明显提升企业的生产效率与产品质量,是一种很好的数字化、网络化的智能生产模式。
图8
应用前景
“六维智能”分别从计划源头、过程协同、设备底层、资源优化、质量控制、决策支持等6个方面着手实现智能工厂,这6个方面涵盖了工业生产的6个重要环节,可实现全面的精细化、精准化、自动化、信息化智能化管理与控制,通过底层设备的互联互通、基于大数据分析的决策支持、可视化展现等技术手段,实现生产准备过程中的透明化协同管理、数控设备智能化的互联互通、智能化的生产资源管理、智能化的决策支持,从而全方位达到智能化的生产过程管理与控制[15]。
从“六维智能”解决方案在青岛海尔模具有限公司的实际应用效果来看,较好地达到了智能化生产过程管理与控制的目的。该系统是专门为海尔模
具定制的,是海尔模具生态圈的主要组成部分,系统以生产设备为核心,从设备底层层面实现了机床、对刀仪等设备的互联互通与大数据分析,从生产管理层面实现了协同准备并行作业,从展现层面实现了生产信息的可视化。实施本系统后,操作工的作业效率从原来1个人管理3台设备提升到7~8台设备,设备利用率提升25%以上,使生产管理更加透明、科学、高效,应用效果比较明显,在海尔模具的数字化制造与管理中发挥了重要的作用。工业落地战略
“工业”不同的人从不同维度来解读,涉及到国家战略、产业战略、企业发展等不同的层面。就从企业的层面去研究,看看企业层面实现工业该怎么做,怎么走,有没有路线图?
近期,随着“工业”的在网络上越炒越热,我国也推出了“中国制造2025”战略,在国家战略需求的驱动下,中国对于制造大国向制造强国的迈进之路也陡然提速,这将对中国制造转型升级打通主动脉。就企业层面来说中国版工业如何落地将成为重点,如何通过信息技术和制造技术的深度融合,打通一切、联通一切是企业信息化建设的目标[16]。
工业是什么?每个人站在不同的角度会有不同的理解,是互联、集成(纵向、横向、端到端)、数据、创新、服务、转型或是cps、是智能工厂、是智能制造亦或是国家战略、企业目标。工业核心内容就是建一个网络、三项集成、大数据分析、八项计划和研究两个主题。
建一个网络:信息物理网络系统(cps)
cps是英文cyberphysical system的缩写,就是讲物理设备连接到互联网上,让物理设备具有计算、通信、精确控制、远程协调和自治等五大功能,从而实现虚拟网络世界与现实物理世界的融合,将网络空间的高级计算能力有效的运用于现实世界中,从而在生产制造过程中,与设计、开发、生产有关的所有数据将通过传感器采集并进行分析,形成可自律操作的智能生产系统。
图9
三个集成
工业中的三项集成包括:横向集成、纵向集成与端对端的集成。工业将无处不在的传感器、嵌入式终端系统、智能控制系统、通信设施通过cps形成一个智能网络,使人与人、人与机器、机器与机器以及服务与服务之间能够互联,从而实现横向、纵向和端对端的高度集成,集成是实现工业的重点也是难点。 纵向集成
纵向集成主要解决企业内部的集成,即解决信息孤岛的问题,解决信息网络与物理设备之间的联通问题。 横向集成
横向集成主要实现企业与企业之间、企业与售出产品之间(如车联网)的协同,将企业内部的业务信息向企业以外的供应商、经销商、用户进行延伸,实现人与人、人与系统、人与设备之间的集成,从而形成一个智能的虚拟企业网络。制造业普遍存在的工程变更协同流程就是这样一个典型的横向集成应用场景。 端到端的集成
端到端集成就是把所有该连接的端头(点)都集成互联起来,通过价值链上不同企业资源的整合,实现从产品设计、生产制造、物流配送、使用维护的产品全生命周期的管理和服务,它以产品价值链创造集成供应商(一级、二级、三级„„)、制造商(研发、设计、加工、配送)、分销商(一级、二级、三级„„)以及客户信息流、物流和资金流,在为客户提供更有价值的产品和服务同时,重构产业链各环节的价值体系。
端到端的集成即可以是内部的纵向集成内容,也可以是外部的企业与企业之间的横向集成内容,关注点在流程的整合上,比如提供用户订单的全程跟踪协同流程,将用户、企业、第三方物流、售后服务等产品全生命周期服务的端到端集成。
横向、纵向、端到端三个集成的实现,不论技术层面还是业务层面在soa信息集成都能找到相应的解决方案。
大数据分析利用
“工业”时代,制造企业的数据将会呈现爆炸式增长态势。随着信息物理系统(cps)的推广、智能装备和终端的普及以及各种各样传感器的使用,将会带来无所不在的感知和无所不在的连接,所有的生产装备、感知设备、联网终端,包括生产者本身都在源源不断地产生数据,这些数据将会渗透到企业运营、价值链乃至产品的整个生命周期,是工业和制造革命的基石。
总体来说,工业关注的企业数据分为四类:
产品数据
包括设计、建模、工艺、加工、测试、维护、产品结构、零部件配置关系、变更记录等数据。产品的各种数据被记录、传输、处理和加工,使得产品全生命周期管理成为可能,也为满足个性化的产品需求提供了条件。
运营数据
运营包括组织结构、业务管理、生产设备、市
场营销、质量控制、生产、采购、库存、目标计划、电子商务等数据。工业生产过程的无所不在的传感、连接,带来了无所不在的数据,这些数据会创新企业的研发、生产、运营、营销和管理方式。
价值链数据
包括客户、供应商、合作伙伴等数据。企业在当前全球化的经济环境中参与竞争,需要全面地了解技术开发、生产作业、采购销售、服务、内外部后勤等环节的竞争力要素。大数据技术的发展和应用,使得价值链上各环节数据和信息能够被深入分析和挖掘,为企业管理者和参与者提供看待价值链的全新视角,使得企业有机会把价值链上更多的环节转化为企业的战略优势。例如,汽车公司大数据提前预测到哪些人会购买特定型号的汽车,从而实现目标客户的响应率提高了15%至20%,客户忠诚度提高7%。 外部数据
包括经济运行、行业、市场、竞争对手等数据。为了应对外部环境变化所带来的风险,企业必须充分掌握外部环境的发展现状以增强自身的应变能力。大数据分析技术在宏观经济分析、行业市场调研中得到了越来越广泛的应用,已经成为企业提升管理决策和市场应变能力的重要手段。
工业落地中国企业,工业大数据是一项重要抓手。利用工业大数据分析,可以找出隐性的问题并预测未知情况的发生,有助于及时地做好预防,避免故障和偏差。结论
以三一重工18号工厂作为研究对象.对其运作方式、运作特点进行了较为详细地分析与讨论,从而得出工厂的智能化基因。并且进一步得出了智能工厂的框架,为系统化建设智能工厂打下了基础。主要的研究结论如下:
1.在理论上对数字化工厂、智能工厂和智能制造进行了分析指出,要又好又快地发展智能工厂就必须先建设好数字化工厂。
2.对比三一重工18号工厂实现智能化之后生产效率得到提升,直观地反映了智能化对制造业带来的好处。
3.通过对18号工厂的生产线、物流系统、执行系统、控制中心进行分析,找到了工厂可实现智能化的内在基因。也就是在设备联网+远程数据采集的基础上,实现智能化的生产过程管理与控制,从6个方面打造适合中国国情的智能工厂(1)。
4.概括了智能工厂的框架,提出了运用大数据分析,做好cps和三个集成是实现智能工厂的前提条件,而智能工厂的标志就是生产流程智能化,生产设备动态适应个性化的产品需求。
参考文献
[1] 李梦迪.基于以太网的智能工厂柔性制造生产
线控制系统设计与实现[d].河北工程大学,2016.[2] 乔荻.智能工厂设备点检系统中辅助移动视频
监控的设计[d].安徽大学,2016.[3] 商滔.面向智能工厂离散型智能制造单元的研
究[d].杭州电子科技大学,2016.[4] 温泉.智能工厂与后台数据服务平台的设计[d].广东工业大学,2015.[5] 框架的工厂智能监控分析系
统的设计与实现[d].北京交通大学,2016.[6] 王冠.基于嵌入式的植物工厂智能监控系统的研究[d].天津理工大学,2015.[7] 史诗莹.数字化工厂技术在锅炉智能制造中的应用[d].华东理工大学,2015.[8] 沈振萍.基于企业信息工厂的商务智能数据管
理[d].安徽大学,2013.[9] 孙晶.基于物联网技术的工厂智能照明系统的设计[d].成都理工大学,2012.[10] 赵有生.蔬菜工厂化育苗的智能管理与综合评
价研究[d].吉林大学,2011.[11] 宋运通.基于实时数据库的工厂智能平台研究
开发[d].天津大学,2009.[1]马孟模.流程工业智能工厂建设技术应用探究[j].工业控制计算机,2017,(03):53-54+57.[12] 江文成,李星,张晶.智能工厂增强现实技术应用
与展望[j].船舶标准化与质量,2016,(06):37-41.[13] 顾桓,田红.软包装材料生产线的智能工厂实现
模式及技术[j].计算机测量与控制,2016,(11):222-225.[14] 李利民,侯轩,毕晋燕.高端装备制造业智能工厂
建设思路和构想[j].科技创新与生产力,2016,(04):16-19.[15] [10]商滔.面向智能工厂离散型智能制造单元的研究[d].杭州电子科技大学,2016.[16] 华镕.未来的智能工厂[j].仪器仪表标准化与计
量,2015,(05):15-18.
智能制造工程实施指南篇5
智能制造「‘」(工m:intelligent manufacturing)是一种由智能机器和人类专家共同组成的人机一体化智能系统,它在制造过程中能进行智能活动,诸如分析、推理、判断、构思和决策等。通过人与智能机器的合作共事,去扩大、延伸和部分地取代人类专家在制造过程中的脑力劳动。并对人类专家的制造智能进行收集、存储、完善、共享、继承和发展。智能制造系统概述
智能制造系统「2」就是要通过集成知识工程、制造软件系统、机器人视觉与机器人控制等来对制造技术的技能与专家知识进行模拟,使智能机器在没有人工干预情况下进行生产。智能制造系统就是要把人的智力活动变为制造机器的智能活动。智能制造系统的物理基础是智能机器,它包括具有各种程序的智能加工机床,工具和材料传送装置,检测和试验装置,以及装配装置等。智能化制造的特点
川智能化制造技术以实现优质、高效、低耗、清洁、灵活生产,提高产品对动态多变市场的适应能力和竞争力为目标。
(2)智能化制造技术不局限于制造工艺,而是覆盖了市场分析、生产管理、加工和装配、销售、维修、服务,以及回收再生的全过程。
(3)智能化制造强调技术、人、管理和信息的四维集成,不仅涉及到物质流和能量流,还涉及到信息流和知识流,即四维集成和四流交汇是智能化制造技术的重要特点:
(4)智能化制造技术更加重视制造过程组成和管理的合理化以及革新,它是硬件、软件、智能(人)与组织的系统集成。
2.智能化制造数控设备的关键技术
机械制造设备的智能化、网络化、以及对神经元网络、云计算技术的研究与应用,使机械制造工)‘智能化技术得到了跨越式的发展,可以说这是又一次具有划时代意义的工业技术革命。目前,智能化制造数控设备的关键技术,除了机械主体以外,主要是由智能数控系统技术、智能感知技术、智能自适应技术、智能神经元网络技术、智能云计算技术和智能专家系统等主要技术构成。
(1>智能化数控系统数控设备智能化的发
展是以数控系统完善的软硬件功能及高灵敏度、高精度感知检测系统为基础,以适应智能化、信息化、数字化集成技术发展的要求。为追求数控设备加工效率和加工质量,数控系统不但有自动编程、前馈控制、模糊控制、自学习控制、工艺参数自动生成、三维刀具补偿、运动参数动态补偿等智能化功能,并有故障诊断专家系统,使自诊断和故障监控功能更趋势完善。伺服驱动系统智能化,能自动感知负载变化,自动优化调整参数。如发那科推出的hrv控制,通过共振追随型hrv滤波器,可以避免因频率变动而造成设备的共振。通过融合旋转伺服电动机,高精度、高响应和高分辨率脉冲编码器,实现高速和高精度的伺服控制,保证极其平稳 的进刀。
(2)智能自适应控制技术自适应控制分为 工艺自适应和儿何自适应。工艺自适应又分为
最佳自适应控制系统(aco)和约束式自适应(acc)。自适应控制自20世纪60年代已开始研究,但用于生产实践尚不普遍。目前应用面较广的还是结构简单的acc系统,已用于铣、车、钻、磨、电加工和加工中心等机床上;而aco多用于加工因素相对简单的磨削和电火花加工(ed m)上。影响加工的因素很多很复杂,不仅建立数学模
型困难,而且要实时采集和实时调整参数也有很大难度,有待深入研究。(3)智能化神经元网络技术最智能的莫过于人的大脑,人工神经元网络
(ann)是一种模拟
人的神经结构,即类似人的大脑神经突触连接的结构进行信息处理的复杂网络系统。人工神经网络具有自学习功能、联想记忆功能、非线性映射功能和高速寻找优化解的功能等。目前,神经元网络多用于数控设备可靠性预测和优化工艺参数方面,神经元网络在机床数控系统方面的研究与应用尚不多见。随着神经元网络技术的发展,在数控机床方面的应用可能会有很好的前景,或许会把数控系统的智能化水平推向高级阶段。未来儿年希望能有一个较快的发展。(4)智能专家系统专家系统是一个智能计算i机程序系统,其专家知识库中含有某个领域大量的l专家知识与经验,就是利用这些专家知识、经验和土解决问题的方法来处理该领域的技术问题。它能够f应用人工智能技术,根据该专家系统中的知识和经验进行推理和判断,模拟专家的决策过程,来解决·需要专家处理的复杂问题。目前,数控设备领域尚l缺乏这种专家系统。(5)云计算将把智能化制造推向更高级阶右段国外工业技术发达国家的大型工业企业、研究机构和高等院校对云计算的研究和发展都极为重视,之认为这是一种具有划时代意义的技术。如美国宇航!局和通用汽车公司都在研究和应用云计算技术;我1国北京建有云计算基地,华为技术有限公司和tcl集团也都特别关注云计算的发展、研究和应用。3.智能化工厂
智能化机械工)‘是以“智能化”为核心,以智能化、数字化、网络化为主要特征的生产、经营实体。智能化工)‘将逐步分层次实现。智能工业机器人在智能自动化制造工)‘中扮演着重要角色。(1>智能工业机器人在智能化数控设备中
除了各种数控设备和相关数控配套设备以外,智能工业机器人在智能制造单元、智能制造系统和智能制造工)‘中具有重要作用。
(2)智能化自动化工)‘在各种智能化自动化数控设备的基础上,智能化工)‘将由工厂‘局部智能自动化、逐步分层次地发展到全工)‘智能自动化和社会化智能制造。
第一层次:单机或单元智能自动化。
单机或单元智能自动化,可以实现长时间无人值守。国内外都有用于生产 的实例。
第二个层次:生产制造系统智能自动化。
在第三代“智能机器人化单元”的基础上,实现计算机网络控制生产车间全自动化系统。包括毛坯仓储管理,再制品仓储管理,成品零件仓储管理及其搬运、装卸、装配作业和质量检验等。
第三个层次:智能化数字化网络制造系统。
在第二层次生产制造系统智能自动化的基础上,配置网络综合管理系统,来实现全工)‘的智能化数字化网络制造。智能化工)‘的实现主要是靠信息通信技术(ict)和智能网络的可靠运行加以保证。具有实时资料搜集与传输功能、高效能计算机与分析预测功能、远程监控与诊断功能及模拟功能等。智能化工)‘最核心的部分是生产过程和全面经营运行的智能自动化,包括设计智能化,生产排序自动化,生产线自动化,测试检验自动化,仓储自动化,电力管理智能自动化等等,进一步发展到自动化无人化工)‘(绝大多数设备可以无人值守)。
第四个层次:智能化社会化生产。
智能化网络化社会化制造,将山企业内部局域网经因特网向企业外部传输。这就是所谓的internet/intranet。网络可使企业与企业之间进行跨地区协同设计、协同制造、信息共享、远程监控、远程诊断和服务等。网络能为制造提供完整的生产数据信息,可以通过网络将加工程序传给远方的设备进行加工,也可远程诊断并发出指令调整。网络使各地分散的数控机床联系在一起,互相协调,统一优化调整,使产品加工不局限于一个工)‘内而实现社会化生产。智能化社会化制造能够借助internet网实现跨行业、跨国际智能化制造,进人internet/intranet时代。云计算借助internet网整合了计算机资源,为智能化制造开了先河。智能化网络化社会化制造将引领社会和全球资源的整合与优化运用,同时将有效地提高人类的生活质量,逐步地减少人类的体力劳动而扩大脑力劳动的比重,进入知识社会,智能社会。
智能制造具有高科技高水平的先进制造系统,面临一些极具挑 战性的问题。当然也需要我们投入大量的研究去攻克这些技术难题。产品和制造过程的数字建模理论及混合约束求解方法,几何表示与推理在运动规划、抓取、夹持、装配、nc加工、计算机视觉、测量中的应用,制造技能和制造知识的表示、获取与推理。智能制造单元的agent建模及智能制造系统的多agent建模理论、多agent系统学>-j及重构理论、多agent系统动力学分析方法及性能评价标、多agent系统规划、调度、控制与协调等。制造资源的holon模型holonic系统组成及其分别式协调与控制等。由于人类智能问题本身的复杂性,智能制造理论与技术的研究任重而道远,上述问题的深入研究,不仅将促进智能制造理论与技术的发展与进一步完展具有积极的推动作用。不仅要提高机器设备的智商,更要协调好人与机器的关系,建立一种新型的人机一体化关系,从而产生高效高性能的生产系统。总之,随着智能制造技术的普及以及其带来的优势愈发明显,可以预见在不远的将来,智能制造将成为下一代重要的生产模式。参考文献:
1.赵亚波 智能制造(工业控制计算机}2002年15卷第3期(333001)2.荣烈润 面向21世纪的智能制造机电一体化2006,12(4)3.熊有伦 孙容磊 李斌 吴波 智能制造:回顾与展望木华中科技大学机械学院武汉430074 c1〕土子龙.中国装备制造业系统演化与评价研究[d].中国博 上学位论文全文数据库,2007 c2} l一继勇.教育结构、产业结构和就业结构的关系研究[d].中 国优秀硕士学位论文全文数据库,2007 参考文献
[1]杨叔子,丁洪.智能制造技术与智能制造系统的发展与研究[j].中国机械工程1992,3(2):15~18 [2]孙大勇.先进制造技术[m].北京:机械工业出版社,2000,12~13
上一篇:实用读经诵读心得体会范文优质5篇