学数学资料【8篇】
【阅览】优质的范文能让您的写作方便快捷,远离加班,以下这篇“学数学资料【8篇】”是由阿拉题库网友整理分享的,供您参考之用,希望对您有些帮助,喜欢就复制下载吧。
六年级数学小报资料【第一篇】
数学手抄报的图片2。
数学手抄报的图片3。
数学手抄报的图片4。
数学手抄报的图片5。
数学小报资料内容:计算课,数学思维不能缺席。
《义务教育数学课程标准(版)》指出:“在教学活动中,不仅要重视学生获得知识技能,而且要激发学生的学习兴趣,通过独立思考或者合作交流感悟数学的基本思想,引导学生在参与数学活动的过程中积累基本经验,帮助形成认真勤奋、独立思考、合作交流、反思质疑等良好的学习习惯。”笔者以为,小学阶段的计算教学,在关注学生获得基本计算技能的同时,更应该让学生在问题情境中经历计算方法的探索与创造,在比较分析中整合并优化算法,体验发现的愉悦与成功,不断地帮助和支持学生积累观察、比较、思考和抽象的数学活动经验,感悟数形结合、优化选择等基本的数学思想。赵薇老师和卢琴老师在《两位数减一位数》的教学设计中,都能关注儿童的数学学习起点,通过问题情境的创设,引发儿童主动思考的积极性,鼓励儿童利用已有的知识储备在操作中尝试,在尝试中比较,在比较中选择,不断积累数学的活动经验,学会有条理地思考、有选择地优化,循序渐进地发展数学素养。具体设计有以下三个特点:
一、为理解而教——积累数学活动经验,激活学生思维的生长点。
英国数学家、教育家怀特海说:“就教育而言,填鸭式灌输的知识、呆滞的思想不仅没有什么意义,往往极其有害。”并强调指出,“不能让知识僵化,而要让它生动活泼起来——这是所有教育的核心问题”。儿童的运算能力不仅表现为在理解算理的基础上能够正确地进行运算,还表现为能根据具体情境主动寻求合理简洁的运算途径和方法来解决问题,不断地积累数学计算的经验。赵老师和卢老师在设计《两位数减一位数(退位)》一课的.教学时,非常重视“让计算生动活泼起来”,即让学生感受到思维生长的力量,设计中始终关注:问题由学生发现,算法由学生尝试,算理由学生探究。学生在观察、操作中思考,在比较、优化中选择,在应用、拓展中感悟。
(一)引发自主发现问题的意识。
问题意识是指成为学生感知和思维的对象,从而在学生心里造成一种悬而未决但又必须解决的求知状态。两位教师呈现了课本主题情境图后,都通过“从图上你能知道哪些数学信息”和“你能提出用减法计算的数学问题吗”的引导,鼓励学生提出了用减法计算的三个问题,并列出三道算式,即34―30、30―8、34―8,激发了探索退位减法的主动性。
(二)参与主动建构算法的过程。
学生数学学习的过程是在教师引导下主动发现、自主探究的建构过程。例如,在探究30―8和34―8的算法过程中,两位教师都让每一个学生尝试参与,充分调用原有的计算基础和思维经验,想到可以有摆小棒、拨计数器和直接口算等方法来计算。尤其是34―8的算法探究,学生结合直观操作演示,想到了三种不同的计算方法:一是“先算10-8=2,再算24+2=26”;二是“先算14―8=6,再算20+6=26”;三是“先算34―4=30,再算30―4=26”。学生在动手操作中理解了算理,在经历探究中明晰了算法,原本枯燥乏味的计算过程因有了学生的主动建构而变得“生动活泼起来”。
(三)关注数学活动经验的积累。
数学活动经验的积累是提高学生数学素养的重要标志。数学活动经验要在“做”的过程和“思考”的过程中积淀,是在数学学习活动中逐步积累的。我们知道,数学活动经验具有很强的迁移性和认同性、主体性和实践性的特征,让学生亲历数学活动,就是帮助学生存储和激活、扩展和完善认知结构,从而不断丰富数学活动经验。例如,在30―8和34―8的教学中,两位教师通过学生主动建构的过程,即在“摆一摆、算一算”“比一比、说一说”“问一问、想一想”中,学生主动地从事观察、操作、实验、猜测、验证、推理与交流等数学活动,运算的经验不断应用,比较的方法不断丰富,探究的能力不断培育,思考的品质不断提升。这样的数学活动经验的积累是一个动态的过程,是在体验中内化,在感悟中提升的过程。
二、为思维而教——渗透基本数学思想,催生学生思维的深刻性。
数学思想蕴含在数学知识形成、发展和应用的过程中。计算课,学生的数学思维不能缺席。在探究算理、明晰算法的过程中要逐步渗透基本的数学思想方法,让学生触摸数学思想方法的精神内核,完善认知结构,培养思维品质,形成数学观念。
(一)充分思考,触摸思想。
“有益的思考方式和应有的思维习惯应放在数学教育的首位。”(波利亚语)数学教学中要赋予学生思考的空间,在思考中生长数学思想的力量,感受思维脉搏的跳动。两位教师的教学设计中很好地渗透了抽象的思想,引导学生探究退位减法时,经历“直观操作—图式表象—形成算法”的过程,将怎样想的过程用小棒摆出来,将怎样算的在计数器上拨出来,将动手操作的过程说出来。摆小棒、拨算珠和图式、算式融为一个整体,在直观的操作中学生逐渐明晰算理、有序思维,智慧之花在手指尖上自然绽放。
(二)优化整合,催生思维。
算法的选择与优化是实际教学中比较难把握的策略。算法优化是指小学数学教学中根据学生的认知特点、积累的运算经验、以及学生擅长的思维方式,引导学生强化某种思维方式,从而使学生获得一种基于自身个性的优化算法,它是一种重要的数学思想。赵老师呈现了34―8的三种算法以后,通过“同学们想出了几种不同的思考方法”和“这些方法,你喜欢用哪一种”的启发提问,让学生的思维在背景中丰富起来。而卢老师则通过“刚才所有摆小棒的计算过程中都有哪一步?为什么要拆开一捆”“比较30―8和34―8计算过程有什么相同处”等问题,让学生的思维镶嵌在比较的数学活动中,从而获得更生动而鲜明的理解。
(三)倾听交流,提升品质。
学会数学交流,可以启迪数学思考的深刻性。两位教师在引导学生探究34―8多样化的算法时都为学生的交流提供了丰富的学习素材,学生可以展示自己的不同观点,倾听他人的想法,理解别人的算法,形成初步的计算策略。不同的算法在师生的追问和倾听中互动交流,学生在交流中慢慢学会合作,学会分享,学会互相欣赏,个性在交流中得到发展。在这个过程中教师与学生也一起分享彼此的思考、经验和知识,交流彼此的情感、体验与观念,从而达到共识、共享、共进。这样的平等对话,不仅是一种认识活动过程,更是一种人与人之间平等的精神交流。意味着主体的凸显、个性的表现、创造性的解放、生命成长的过程。
三、为自由而教——分享个性化地表达,发展学生思维的多样化。
德国数学家康托尔说:“数学的本质在于思考的充分自由。”而“积极、富有创新精神的思维习惯,只有在充分自由的环境下才能产生”。(怀特海语)在数学教学,尤其是计算教学中,这种“充分自由的环境”需要教师首先要为儿童应在营造一种安全、惬意、享受的学习场所,还需要教师能准确把握学生的学习起点、理解学生的学习需要、尊重学生的思维状态,让学生充分敞开心灵、放飞思维,富有个性地参与操作与创造、体验与感悟。
(一)尊重选择,倡导自我建构。
提倡算法多样化,其实质是尊重学生的自我构建和自我理解,倡导学生富有个性地学习与思考。两位教师在教学中都能尊重每一个学生的个性特征,允许不同的学生从不同的角度认识问题,采用不同的方式表达自己的想法,用不同的知识与方法解决问题。每个学生都可以发表自己的观点,倾听同伴的想法,感受算法的多样化与灵活性,并比较不同方法的特点。
(二)关注差异,拓宽思维空间。
由于学生所处的文化环境、家庭背景和自身思维方式的不同,学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。研究表明,由于学生的兴趣、需要、先前经验的不同,学生在课堂上的参与度是存在个体差异的,这种差异既有对同一问题在观点上的激烈争论,也有在解决问题方式方法上的不同选择;既有不同学习风格的体现,也有独特优势潜能的挖掘;既有个体认知思维能力的高低不同,也有个体兴趣、情感、态度等体验上的独特性……所有这些差异都构成了课堂教学资源的丰富性,教师和学生利用这种差异资源不断生发新的观点,不断生长新的思维,不断迸发新的问题。两位教师的教学设计充分关注学生在学习过程中的差异,有效整合多元化的思维方式,让学生凭借已有的知识经验进行充分的探索。尤其是赵老师的设计,在巩固应用部分,通过题组对比练习、变式拓展练习、游戏激趣练习、实际应用练习等,培养学生思维的变通性、灵敏性和批判性,学生的思维在多元的学习过程中不断生长,多样化思维的策略在比较选择中逐步延展。
在实际的教学中,有些老师简单地将“算法的多样化”与“算法的优化”相对立,认为强调多样化就排斥了优化,认同优化就摒弃了多样化。其实,算法的多样化本身包含着优化的过程,优化的过程也是算法多样化的一个持续生成,两者互补共生,是一个动态平衡的过程。笔者在此有一个建议:我们在设计本节课的教学时,还可以进一步让学生自由敞开心灵,丰富学生多样化的思维:如关于34-8的计算探索,可以提供更开放自由的学习环境,充分鼓励学生多样化地探求解决的方法,有学生会用倒着数数的方法,即33,32,31,30,29,28,27,26,算出34-8=26。事实上,学生在解决生活中的数学问题时,会根据实际需要选择适合的方法来计算。例如,计算40-1时,倒着数数的方法也是很便捷的计算,而学生能合理选择适当的方法来解决实际问题是数学教学应该培养的一种素养。
二年级数学小报资料【第二篇】
这些数字符号原来是古代印度人发明的,后来传到阿拉伯,又从阿拉伯传到欧洲,欧洲人误以为是阿拉伯人发明的,就把它们叫做“阿拉伯数字”,因为流传许多年,人们叫得顺口,所以至今人们仍然将错就错,把这些古代印度人发明的数字符号叫做阿拉伯数字。
现在,阿拉伯数字已成全世界通用的数字符号。
九九歌就是我们现在使用的乘法口诀。
远在公元前的春秋战国时代,九九歌就已经被人们广泛使用。在当时的许多著作中,都有关于九九歌的记载。最初的九九歌是从“九九八十一”起到“二二如四”止,共36句。因为是从“九九八十一”开始,所以取名九九歌。大约在公元五至十世纪间,九九歌才扩充到“一一如一”。大约在公元十三、十四世纪,九九歌的顺序才变成和现在所用的'一样,从“一一如一”起到“九九八十一”止。
现在我国使用的乘法口诀有两种,一种是45句的,通常称为“小九九”;还有一种是81句的,通常称为“大九九”。
六年级数学小报资料【第三篇】
我非常喜欢数学,从一年级就开始报培训班学奥数。我学习奥数的教材是《仁华学校(原华罗庚学校)奥林匹克数学课本》。这本书里面有很多课程,有区分图形、做立体模型等等……而我最感兴趣的是“速算与巧算”这一课。
这一课一共讲5种计算的方法。
第一种方法是“凑十法”。就是计算时把能凑成十的数字都凑成十,这样计算的速度就能提高。比如1+2+3+4+5+6+7+8+9+10这道题,计算的时候可以把1和9凑成十,2和8凑成十,以此类推,最后剩下一个5,再把前面的五个十加起来,很容易就得出计算的结果为55。
第二种方法是“凑整法”。比如1+3+5+7+9+11+13+15+17+19这道题,把1和19凑成20,3和17凑成20,5和15凑成20,7和13凑成20,9和11凑成20,再把这五个20加起来就得出计算的结果等于100。
第三种方法叫“用以知求未知”的方法。比如在计算题目时1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20时,先计算1+3+5+7+9+11+13+15+17+19=100,再计算2+4+6+8+10+12+14+16+18+20=110,然后再用100加上110就得出计算结果为210。
最后一种方法叫“带着+、-好搬家”的方法,比如在计算1-2+3-4+5-6+7-8+9-10+11这道题时,1减2不够减,所以我们可以把算是改成1+3-2+5-4+7-6+9-8+11-10,然后再算1+(3-2)+(5-4)+(7-6)+(9-8)+(11-10)。这样,就非常容易的得出最后的结果是1+1+1+1+1+1=6。
通过学习奥数,我感觉奥数这门课其乐无穷,我下决心一定要把奥数这门课学好!
五年级数学学习资料【第四篇】
2、计算小数乘法末尾对齐,按整数乘法法则进行计算。
计算整数因数末尾有0的小数乘法时,要把整数数位中不是0的最右侧数字与小数的末尾对齐。
小数乘整数与整数乘整数有什么不同?
1、小数乘整数中有一个因数是小数,所以积一般来说也是小数。
2小数乘法中积的小暑部分末尾如有0可以根据小数的基本性质去掉小数末尾的0而整数乘法中是不能去掉的。
数学考试复习资料【第五篇】
这次数学考真是让人欲哭无泪啊!
这次数学试卷前面还好不算太难,可后面就让我想哭了,特别是最后三道题。先说第7题,读了一遍题目,我觉得好像做过,可是至于怎么做不大记得了,我十分着急,我烦了:“算了,瞎蒙一个吧,说不定可以蒙对。”我就随便猜了一个算式写上去。第8题我是倒过来倒过去,终于弄明白了,做了上去。最让人头疼的题,便是第9题了,我怎么解都解不出,虽然我列了几个算式,但是算出来都不是整数,我还想再换个方式继续想,可时间不等人,我在快交卷前两秒匆匆写了个答案上去,希望瞎猫能碰上死耗子。不过终于是考完了,想:“考完啦,心总算落下了,王老师批卷应该没那么快!”
到了中午,我的到了一个让我更加欲哭无泪的消息:王老师把试卷批好了!我拿了个说好不好说坏不坏的分数“90”!我赶忙看了一眼试卷,又发现我的老朋友“粗心”又出来“溜达”,最后的三道题,我总算是对了两道,但是我前面错了很多啊!
这次考试真是欲哭无泪,我讨厌“粗心”这个朋友,我要和它“绝交”!
数学家华蘅芳资料【第六篇】
华蘅芳(1833~1902) 中国清末家、翻译家和教育家。字若汀,生于道光十三年,卒于光绪二十八年。江苏常州金匮(今无锡市)人。出生于世宦门第。少年时酷爱数学,遍览当时的各种数学书籍。时游学上海,与著名数学家李善兰(字秋纫)交往,李氏向他推荐西方的代数学和微积分,他刻苦自学,这对他走上数学道路有重要的影响。咸丰十一年(1861)为曾国藩擢用,和同乡好友徐寿(字雪村)一同到安庆的军械所,绘制机械图并造出中国最早的轮船“黄鹄”号。他曾三次被奏保举,受到洋务派器重,一生与洋务运动关系密切,成为这个时期有代表性的科学家之一。同治四年(1865)曾国藩、李鸿章合奏创设江南制造局,华蘅芳参加了该局的'计划和开创。同治七年(1868)江南制造总局内开设翻译馆,华蘅芳与徐寿积极从事,为介绍西方先进的科学技术,分门别类地进行系统译述,对近代科学知识特别是数学知识在中国的传播,起到了重要的作用。
华蘅芳先后在江南制造总局和天津机器局担任提调,光绪二年(1876)在上海格致书院担任教习。他在晚年转向教育界,从事着述和教学。他对数、理、化、工、医、地以及音乐等学科有广博的学识,并注重科学研究。他编写了深入浅出的数学讲义和读本,以专着《学算笔谈》进行数学评论,对于培养和普及科学殊多贡献,成为有声望的一代学者。光绪十三年(1887)他曾在天津武备学堂中任教习,光绪十八年(1892)在湖北武昌主讲两湖书院。他的江蘅、杨兆?等以及胞弟华世芳(字若溪,1854~1905)受到他的影响都成为数学家。
华蘅芳的治学精神反对历来算家喜“炫其所长而匿其所短”、只讲算法而“秘匿”算理的风气;他注重数学教育,曾说“吾果如春蚕,死而足愿矣”,把发展数学的寄托于后学;在数学评论中阐明了他的数学教学思想,象“观书者不可反为书所役”等精辟见解,表明他的论中已具有辩证的内容;华蘅芳的观点散见于着述之中,兼有唯心、唯物的成分,尚未形成思想体系。
华蘅芳官至四品,但非从政。他不慕荣利,穷约终身,了科学、教育的道路,与李善兰、徐寿齐名,同为中国近代科学事业的先行者。
数学复习的资料【第七篇】
他的特点是把一定数量的物品,平均分配给一定数量的人,在两次分配中,一次有余,一次不足(或两次都有余),或两次都不足),已知所余和不足的数量,求物品适量和参加分配人数的问题,叫做盈亏问题。
解题关键:盈亏问题的解法要点是先求两次分配中分配者没份所得物品数量的差,再求两次分配中各次共分物品的差(也称总差额),用前一个差去除后一个差,就得到分配者的数,进而再求得物品数。
- 解题规律:总差额每人差额=人数
- 总差额的求法可以分为以下四种情况:
- 第一次多余,第二次不足,总差额=多余+ 不足
- 第一次正好,第二次多余或不足 ,总差额=多余或不足
- 第一次多余,第二次也多余,总差额=大多余-小多余
- 第一次不足,第二次也不足, 总差额= 大不足-小不足
分得几支?共有多少支色铅笔?
- 解题关键:年龄问题与和差、和倍、
差倍问题类似,主要特点是随着时间的变化,年岁不断增长,但大小两个不同年龄的差是不会改变的,因此,年龄问题是一种差不变的问题,解题时,要善于利用差不变的特点。
例 父亲 48 岁,儿子 21 岁。问几年前父亲的年龄是儿子的 4 倍?
)倍。这样可以算出几年前父子的年龄,从而可以求出几年前父亲的年龄是儿子的 4 倍。列式为: 21- ( 48-21 )( 4-1 )=12 (年)
- 解题关键:解答鸡兔问题一般采用假设法,假设全是一种动物(如全是鸡或全是兔,然后根据出现的腿数差,可推算出某一种的头数。
- 解题规律:(总腿数-鸡腿数总头数)一只鸡兔腿数的差=兔子只数
- 兔子只数=(总腿数-2总头数)2
- 如果假设全是兔子,可以有下面的式子:
- 鸡的只数=(4总头数-总腿数)2
- 兔的头数=总头数-鸡的只数
例 鸡兔同笼共 50 个头, 170 条腿。问鸡兔各有多少只?
兔子只数 ( 170-2 50 ) 2 =35 (只)
1 分数加减法应用题:
- 分数加减法的应用题与整数加减法的应用题的结构、数量关系和解题方法基本相同,所不同的只是在已知数或未知数中含有分数。
2分数乘法应用题:
- 是指已知一个数,求它的几分之几是多少的应用题。
- 特征:已知单位1的量和分率,求与分率所对应的实际数量。
- 解题关键:准确判断单位1的量。找准要求问题所对应的分率,然后根据一个数乘分数的意义正确列式。
3 分数除法应用题:
- 求一个数是另一个数的几分之几(或百分之几)是多少。
特征:已知一个数和另一个数,求一个数是另一个数的几分之几或百分之几。一个数是比较量,另一个数是标准量。求分率或百分率,也就是求他们的倍数关系。
- 解题关键:从问题入手,搞清把谁看作标准的数也就是把谁看作了单位一,谁和单位一的量作比较,谁就作被除数。
- 甲是乙的几分之几(百分之几):甲是比较量,乙是标准量,用甲除以乙。
- 甲比乙多(或少)几分之几(百分之几):甲减乙比乙多(或少几分之几)或(百分之几)。关系式(甲数减乙数)/乙数或(甲数减乙数)/甲数。
六年级数学复习资料【第八篇】
1、负数的由来:
2、负数:小于0的数叫负数(不包括0),数轴上0左边的数叫做负数。
若一个数小于0,则称它是一个负数。
负数有无数个,其中有(负整数,负分数和负小数)。
正数:大于0的数叫正数(不包括0),数轴上0右边的数叫做正数。
若一个数大于0,则称它是一个正数。正数有无数个,其中有(正整数,正分数和正小数)。
4、0既不是正数,也不是负数,它是正、负数的分界限。
负数都小于0,正数都大于0,负数都比正数小,正数都比负数大。
上一篇:社保基金投资指南实用优推8篇
下一篇:投资风险承诺书【优质8篇】