数据分析师的市场研究(精选10篇)
【参照】优秀的范文能大大的缩减您写作的时间,以下优秀范例“数据分析师的市场研究(精选10篇)”由阿拉漂亮的网友为您精心收集分享,供您参考写作之用,希望下面内容对您有所帮助,喜欢就复制下载吧!
数据分析师的市场研究【第一篇】
4、研究用户画像、定期进行用户行为数据分析、梳理产品使用的核心场景,提高市场投放和运营策略的收益能力。
1、全日制本科学历及以上,2年以上相关经验;
2、熟悉在线教育行业;有基本数据运营的知识,有互联网平台相关工作经验;
3、有使用易观千帆、七麦数据等第三方数据平台的实战项目经验;
4、有使用神策、微信小程序、growingio等数据分析工具的使用和有埋点经验;
6、能快速掌握业务知识,发现问题,分析问题并提出解决方案;
7、具有良好的沟通能力及抗压能力;有优秀的团队合作意识,善于沟通协调各部门合作。
数据分析师的市场研究【第二篇】
5、参与推荐系统建设,直接向cto汇报。
1、全日制大学本科及以上学历,数学、统计、计算机等相关专业;
2、3年以上数据统计相关经验;
3、强烈的责任心,良好的沟通能力,细致耐心的工作态度,为人开朗乐观;
4、良好的学习能力,逻辑清晰,对数据敏感;
5、具有简单开发与数据挖掘算法基础优先优先。
数据分析师的市场研究【第三篇】
2、负责处理客户的现场咨询、环境分析研判指导、数据分析指导、专家会商等需求;。
3、负责区域大气污染成因分析指导及分析报告模板编制;。
4、负责协助重要项目实施的.技术指导和技术支撑工作。
1、大气科学、环境科学、大气物理或气象等相关专业博士,或硕士特别优秀者;。
2、掌握大气污染理论,对污染扩散模型、污染预警、污染溯源等技术有实践经验;。
4、要求创新能力强,善于利用新方法新工具解决新问题;。
5、具有较强的逻辑分析能力和文字表达能力,善于和人交流。
数据分析师的市场研究【第四篇】
4、推动用户与销售经营生产数据的.融合通过用户指标、跨部门数据合作等不断推进用户数据应用。
1、本科学历,数学、统计学、计算机相关专业;
4、熟悉主流的数据分析方法(回归分析、关联分析、预测分析等)及数据统计模型。
数据分析师的市场研究【第五篇】
数据分析师需要使用数据库技术和统计分析软件,对企业内外部的业务数据进行处理、清洗和分析。以下是本站网友分享的“数据分析师的市场研究(精选10篇)”,周报退货分析至上级,后期跟进采购部处理进程以及结果;。
3.周报供应链健康情况:资金占比分布,库存状态,供应商风险;。
5.日跟踪订单入库付款情况,将情况日报至上级;。
7.协助上级进行财务审核等工作。
任职要求:
2、有独立进行数据分析项目,特别是电商行业数据分析的优先考虑;。
3、具有较强的数据分析能力和严密的逻辑思维,擅于通过数据分析发现业务规律;。
5、具备较强的沟通能力以及工作主动性,能协调带动团队共同努力;。
6、熟悉java或其他编程优先考虑。
职责:
2、协助销售部制定年度、季度、月度地区性销售目标,并追踪销售目标完成进度;。
3、各类业务数据分析汇总、趋势分析,为流程改善和业务发展提供数据支持;。
4、监督、推动部门各项工作的执行;。
任职资格:
1、本科及以上学历,具有金融、经济管理类专业优先;。
2、2年以上战略研究相关工作经验,具备战略规划、业务规划、分析研究经验者优先。
4、对数据敏感,擅长数据分析,能擅写运营分析报告;。
5、具备大型集团或企业战略运营管理相关工作经验者优先。
职责:
1.负责统计公司每天的数据报表,协助其他分公司完成需要的数据报表。
2.对项目及相关数据进行分析、挖掘,制作数据报表。
任职要求:
1.大专及以上学历,有英语基础的优先考虑。
2.年龄29岁以下,无专业和经验限制。
3.工作细心、耐心,具有出色的逻辑能力和对数据的敏感度,思维严谨。
4、熟悉office软件的常用功能,尤其熟练运用excel图表及数据处理。
5、有较强的理解能力、沟通能力及语言表达能力。
职责。
1.定义业务人员行程数据标准,数据指标以及使用规则。
2.收集和管理业务人员日常行程数据,整理成报表。
3.分析业务人员行程,总结其中的问题,提出业务人员行程改进方法。
4.统计业务人员业绩、单量等相关数据,综合业务人员日常行程,提出优化方法。
5.领导交代的其他事项。
任职要求:
2.熟练使用excel各种统计分析公式。
3.责任心强,对工作认真。
数据分析师的市场研究【第六篇】
3、精通相关等办公软件、地图软件,掌握气象、空气质量、高斯模型,具有较强的数据统计分析能力,对空气质量、气象数据等具有统计经验。
5、思维逻辑能力强,具有良好的数据分析能力和报告撰写能力,有较强的'沟通和学习能力,愿意投身于治理城市雾霾的创新事业中。
数据分析师的市场研究【第七篇】
投资分析师是指在黄金生产、流通领域从事投资操作、市场分析、咨询和投资策略制定与评估的人员,是正确引导黄金投资、防范黄金投资风险、促进黄金市场规范发展的关键人物。
他们的主要工作内容有:进行黄金市场和黄金投资战略的分析、咨询与规划;向黄金生产、经营、经纪、投资和代理机构提供黄金价格影响因素分析和价格预测;按照与黄金投资客户签订的代理协议,提供参考性的黄金投资策略;进行黄金投资的风险或收益分析,指导客户黄金投资;根据客户需要,代客户拟定黄金投资计划等。
投资分析属于跨学科研究,从业要掌握多个领域的知识和技能:具有良好的国际政治、经济、金融知识结构,熟知黄金,货币理论,掌握一套完整而独特的黄金价格预测方法,并能够熟练运用这些理论和方法进行黄金市场深度分析;比较准确的预测影响黄金价格的主要因素,预测黄金价格走势;把握住机会,在实际操作中取得实实在在的效益;能够拟定黄金生产、冶炼、加工和流通企业发展战略规划,能够从事黄金市场和黄金投资战略分析与咨询。助理分析师主要负责黄金投资交易的具体操作、资金清算、信息收集整理、技术分析等。
与股票、房产相比,黄金无论在哪个国家、哪个年代,都是变现能力极强的硬通货。其不仅具有保值功能,而且从长期投资来看,具有不错的增值空间。
一项对月收入3000元以上的市民的调查显示,近40%的被调查者对投资黄金有相当浓厚的兴趣,这其中有近1/3的人愿意用20%以上的个人资产进行黄金投资。专家预计,未来还将有相当很大一部分投资者进入黄金市场,个人炒金将呈现极大的魅力。
中国黄金产量达270491吨,同比增长%,创历史最高。中国黄金产量已从世界第四跃升为世界第二。随着上海黄金交易所黄金投资业务向社会开放,群众可以通过商业银行或投资代理机构进行黄金投资。黄金是迄今最快捷、最方便的投资渠道之一,投资黄金的人员会迅速增加,他们迫切需要黄金投资分析师的策划和指导。
目前,国内黄金行业(包括黄金生产、加工、流通和黄金投资与投资咨询)的从业人员达130万人,而在黄金经营企业(金矿、黄金加工企业、黄金饰品店)和金融系统(上海黄金交易所、各大商业银行)从事与黄金投资相关的分析人员数量估计在万人左右。
黄金投资行业这个朝阳行业未来的几年将会迎来一个迅速的发展期,会有很广阔的发展的前景。黄金投资分析师不仅能帮助普通投资者降低风险,还能像股市上的证券分析师那样,为投资者提供价格预测、风险管理、投资咨询、代理理财等多项服务,从而让炒金族获得更大收益。
中国投资黄金的人群据估算已经超过100万人。与为数甚众的证券业分析师相比,黄金投资分析师这一职业属于新兴事物,专业的黄金投资分析师人才相当匮乏。黄金投资分析师职业的确立是行业发展的需要,是我国金融改革和开放的需要,是提高国家金融安全的需要,是我国社会主义经济建设水平提高的需要。
尽管黄金投资分析师的前景看好,但从事这个职业并不那么轻松,因为黄金市场与汇市、油市、股市联动,还与国际政治因素密切相关,影响金价的因素非常复杂,预测金价远比预测股票价格要难得多,其要求不比证券分析师差多少。内资行业与外资的相关专业人士的差距也非常大,迫切需要通过大量的实践经验,阅历的积累,提升个人的专业素质与职业眼界,提高职业竞争能力。
黄金投资分析师的收入来源于三个部分:一是任职单位发放的固定年薪及分红,二是为投资者提供的专项咨询服务,三是个人投资的收入。据了解,像上海、广州、北京等目前炒金发达地区,黄金投资分析师的月薪几乎都在万元以上,甚至个别专为大客户服务的人月收入超过5万元。
数据分析师的市场研究【第八篇】
数据分析师大多是支撑运营和决策的,但是大多都是提供数据,分析的较少。我说的分析是给出意见的分析。近期,我也在招聘数据分析师,遇到一些问题,来面试的朋友,要么就是工具的使用者,业务非常不熟悉。要么是就是链条太短,只是做网站端和销售端,对供应链、客服等非常不熟悉。
这个题目就是开放的问一个销售问题,看分析师如何给出相关的意见或者建议。当然这不是分析范畴,但是我觉得分析师既然是做运营支撑、甚至决策,那么一些基础的销售理念是应该有的。
题目:100斤苹果怎么卖,可以卖的钱又多,卖的又快?
开题:此题目意在说如何从商品的角度去考虑如何销售的问题,传统的销售方式就是经典的4p理论。渠道,商品,价格,促销。而此问题意在从商品,价格,促销的角度去问面试者问题。
题注:
1. 如果回答者答的问题说的过多,比如说渠道如何做,如果做售后,如何二次营销,范围就扩大了。
2. 如果回答者的回答过于泛,或者理论的东西比较多,或者听着非常正确而不给出解决方案,那不适合一线分析师。
上面两项是减分项。
刀刀的解答:
1、渠道是重要
用户考虑暂且放在渠道里,因为用户必须依赖渠道实现链接。但就此问题来说,有点跑题,问的是卖苹果,用户考虑一般先考虑需求和消费场景,所以不分享渠道的做法。
2、商品自己分堆
最简单,一堆贵,一堆便宜。苹果不分拣。卖个差不多再重分,46开分。
解读:利用价格做出价格歧视的感念,同时告诉消费者4的商品比较好卖,这样一个明确的指向。
3、商品拆分
按好坏分堆,好苹果贵30%。其余的分两堆,一般的常规卖,最差的贵50%,并贴上标签如涩苹果之类。
解读:劣质商品只是品质不好,不是不能卖高价,关键是你要告诉别人这是稀缺的。真实说明商品特征,不要做多,好的商品还是要高价的,稀缺商品要更贵。一般的商品就这样买。但是注意结合第四条。
4、时间因素
一般早上要比晚上贵,水果尽量当天卖完,所以在晚上8点后开始半价卖。
解读:快和多都是必须的,水果隔夜很多都会坏。晚上8点是大家出来遛弯的时候,可以做清仓了。不留呆滞库存是关键,高周转是关键。手里最好留的是钞票,而不是货物。
5、地点
这个本来不想说,还是说一下,火车站和汽车站绝对卖不出去,摊位没有。最重要的是你见过这种地方卖水果的销售有好的么?好地方在地铁口,菜市口,学校门口。
解读:人流多并不代表需求好,菜市场门口绝对比火车站好。为什么,火车站贵这是大家都知道的,再者,谁没事到火车站去买水果啊。菜市场还是做长久生意的地方,学校门口,地铁口大家多观察就知道了。
商品这个东西可以玩的很多。留几句话:
不要卖货源不稳定的某类商品。
坚决下架无法销售占位置的`商品。
主推非标准品。
流行品一定是打折卖的。
via:庖丁的刀(外贸电商分析师。关注外贸电商b2c,国内大型零售电商平台,资深数据分析师)
随着大数据概念的火热,数据科学家这一职位应时而出,那么成为数据科学家要满足什么条件?或许我们可以从国外的数据科学家面试问题中得到一些参考,下面是77个关于数据分析或者数据科学家招聘的时候会常会的几个问题,供各位同行参考。
1、你处理过的最大的数据量?你是如何处理他们的?处理的结果。
2、告诉我二个分析或者计算机科学相关项目?你是如何对其结果进行衡量的?
3、什么是:提升值、关键绩效指标、强壮性、模型按合度、实验设计、2/8原则?
4、什么是:协同过滤、n-grams, map reduce、余弦距离?
6、如何设计一个解决抄袭的方案?
7、如何检验一个个人支付账户都多个人使用?
8、点击流数据应该是实时处理?为什么?哪部分应该实时处理?
11、你是如何处理缺少数据的?你推荐使用什么样的处理技术?
12、你最喜欢的编程语言是什么?为什么?
13、对于你喜欢的统计软件告诉你喜欢的与不喜欢的3个理由。
14、sas, r, python, perl语言的区别是?
15、什么是大数据的诅咒?
16、你参与过数据库与数据模型的设计吗?
17、你是否参与过仪表盘的设计及指标选择?你对于商业智能和报表工具有什么想法?
18、你喜欢td数据库的什么特征?
22、什么是哈希表碰撞攻击?怎么避免?发生的频率是多少?
23、如何判别mapreduce过程有好的负载均衡?什么是负载均衡?
26、为什么朴素贝叶斯差?你如何使用朴素贝叶斯来改进爬虫检验算法?
27、你处理过白名单吗?主要的规则?(在欺诈或者爬行检验的情况下)
28、什么是星型模型?什么是查询表?
29、你可以使用excel建立逻辑回归模型吗?如何可以,说明一下建立过程?
33、普通线性回归模型的缺陷是什么?你知道的其它回归模型吗?
34、你认为叶数小于50的决策树是否比大的好?为什么?
35、保险精算是否是统计学的一个分支?如果不是,为何如何?
36、给出一个不符合高斯分布与不符合对数正态分布的数据案例。给出一个分布非常混乱的数案例。
37、为什么说均方误差不是一个衡量模型的好指标?你建议用哪个指标替代?
42、你如何建议一个非参数置信区间?
44、什么是归因分析?如何识别归因与相关系数?举例。
45、如何定义与衡量一个指标的预测能力?
47、如何创建一个关键字分类?
48、什么是僵尸网络?如何进行检测?
50、什么时候自己编号代码比使用数据科学者开发好的软件包更好?
52、什么是概念验证?
53、你主要与什么样的客户共事:内部、外部、销售部门/财务部门/市场部门/it部门的人?有咨询经验吗?与供应商打过交道,包括供应商选择与测试。
54、你熟悉软件生命周期吗?及it项目的生命周期,从收入需求到项目维护?
55、什么是cron任务?
56、你是一个独身的编码人员?还是一个开发人员?或者是一个设计人员?
57、是假阳性好还是假阴性好?
58、你熟悉价格优化、价格弹性、存货管理、竞争智能吗?分别给案例。
59、zillow’s算法是如何工作的?
60、如何检验为了不好的目的还进行的虚假评论或者虚假的fb帐户?
61、你如何创建一个新的匿名数字帐户?
62、你有没有想过自己创业?是什么样的想法?
63、你认为帐号与密码输入的登录框会消失吗?它将会被什么替代?
65、哪位数据科学有你最佩服?从哪开始?
66、你是怎么开始对数据科学感兴趣的?
67、什么是效率曲线?他们的缺陷是什么,你如何克服这些缺陷?
68、什么是推荐引擎?它是如何工作的?
69、什么是精密测试?如何及什么时候模拟可以帮忙我们不使用精密测试?
70、你认为怎么才能成为一个好的数据科学家?
71、你认为数据科学家是一个艺术家还是科学家?
73、给出一些在数据科学中“最佳实践的案例”。
74、什么让一个图形使人产生误解、很难去读懂或者解释?一个有用的图形的特征?
75、你知道使用在统计或者计算科学中的“经验法则”吗?或者在商业分析中。
76、你觉得下一个20年最好的5个预测方法是?
数据分析师的市场研究【第九篇】
职责:
6、根据公司业务需求,进行数据分析并提供决策依据;。
7、参与模型涉及算法测试。
岗位要求:
1、数学、统计、计算机、电子、自动化相关专业本科及以上学历,一年工作经验及以上;。
5、具有良好的需求文档、设计文档编写能力。
数据分析师的市场研究【第十篇】
职责:
4.监控、分析用户运营数据,根据运营数据提出产品构想、策略及计划;。
5.负责挖掘并分析行业的现状及需求,负责研究市场竞争对手的产品,进行分析对比,提供产品策略和运营建议。
岗位要求:
1、本科及以上学历,专业不限;3年以上工作经验;了解互联网电视业务,能够为运营工作提升设置合理的评估指标。
5、了解对比分析、聚类分析等基础的数据分析方法;。
6、具备成熟、职业化的思维方式,具有团队精神。
上一篇:伤感说说心情不好【精彩5篇】