高二数学教学计划的重要性热选【汇集10篇】

网友 分享 时间:

【参照】优秀的范文能大大的缩减您写作的时间,以下优秀范例“高二数学教学计划的重要性热选【汇集10篇】”由阿拉漂亮的网友为您精心收集分享,供您参考写作之用,希望下面内容对您有所帮助,喜欢就复制下载吧!

高二数学教学计划的重要性【第一篇】

本节课教学内容是《普通高中课程标准实验教科书·数学必修3》(苏教版)中“互斥事件”第1课时。教材既介绍计算概率的两种简单模型——古典概型、几何概型,开始学习求解复杂事件的概率。对复杂事件的概率的计算,就需要分析复杂事件与基本事件间的关系,以及复杂事件发生的概率与基本事件发生的概率间的关系,为此,教材引入互斥事件、对立事件概念,从中渗透化繁为简的指导思想。本节内容在高考考试说明要求为a级。

针对本校提倡的“先学——后批——自纠——点评——反思”教学流程,学生在充分预习的情况下对教学案中的“自学质疑”板块已有较好的把握,绝大多数学生能够完成其中问题,但仍有部分学生对互斥事件、对立事件、基本事件三者概念产生混淆,对古典概型、几何概型的应用不太熟练,对问题的情境的理解不够到位,分类讨论、正难则反的数学思想还没得到深度认同。

本节课是在新课程标准实施背景下,结合市教育局倡导的“三案六环节”教学模式,结合自身“知识问题化,问题层次化”的设计思路展开的,与以往稍有不同的是突出了学生作为课堂的主体地位,教师主要发挥引导、评价及完善功能。整个过程为学生提供充分自由表达、质疑、探究、讨论问题的机会,让学生通过个人、小组、集体等多种解决疑难问题的尝试活动,在知识巩固和灵活运用的过程中,逐步培养学生发现问题、探索问题、解决问题的能力和创造性思维的能力。

(1)从时间分配上来说,首先由学生回答课件提出的一系列问题占用10分钟,接着有15分钟的精彩展示,由学生根据课前板书的内容展开讲解交流,然后借助导学案的巩固题、变题进行讨论占用15分钟,最后有5分钟的课堂小结。

(2)从教学安排上来说,上课前,学案学生提前完成,教师及时审阅初步了解学情状况;课堂上,学生精彩展示细致书写并配以适当讲解达到自己说的出,大家听得懂,接着,提供变题让全体学生积极解答达到及时巩固升华的目的,接着学生完成本课时的巩固案,最后,让学生作出课堂反思总结。

(3)从内容安排上来说,分三大块:第一块,问题情景(课件);第二块,交流展示(预习案);第三块,巩固提高(巩固案、变题)。

1.了解互斥事件及对立事件的概念;。

2.能判断两个事件是否是互斥事件还是对立事件;。

3.了解两个互斥事件概率的计算公式;。

4.注意学生思维习惯的培养,在顺向思维受阻时,转而逆向思维;。

5.通过学生“自学、互学、群学”培养学生自主探究和合作交流的良好品质,激发学生学习数学的兴趣。

教学重点:互斥事件和对立事件概率的应用;。

教学难点:互斥事件和对立事件概念的理解;。

教学准备:学案、巩固案、多媒体课件、遥控激光笔。

[设计意图]数学教学立足于问题处理,一方面,先给学生足够的时间充分思考不仅可以增加课堂教学的容量,而且能够提高教学内容的针对性,从而达到课堂效益的最大化;另一方面,教师能够通过教学案批阅反馈的信息,很好地了解学生对知识的掌握情况,抓住学生的难点和疑点,从而提高课堂讲解的实效性。

[师生活动]教师:由课代表转发教学案(教学案另补附上)。

学生:独立完成预学案部分,并及时上交(自学)。

教师:及时审阅,做好反馈后返还学生。

学生:领取教学案,相互讨论做好订正(互学、群学)。

[学情预设]学生通过“自学、互学、群学”后,主要会有如下疑难问题:

(1)交流展示中第1题,学生对互斥事件和对立事件的概念的把握不够准确.

(2)交流展示中第2题,学生在正面分析问题时分类的情况较多,尝试可以通过逆向思维解决,从而避免分类,渗透“正难则反”的数学思想.

(3)交流展示中第3题,学生在将复杂事件通过基本事件表示时有一定的难度,还有解答时的规范性有待加强.

[设计意图]“知识问题化,问题层次化”一组好的问题将学生带入到一种情境,能够激发学生的求知欲,使学生学习变被动为主动,从而在课堂上迸发出智慧的火花.

教师:问题3.尝试抽象出互斥事件的概念及概率的求解公式?

学生:······。

教师:问题4.在两个互斥事件中,如果必有一个发生,则两者的'关系如。

何?

学生:······。

教师:引导学生找出互斥事件、对立事件的关系并加以总结.

[设计意图]兴趣是最好的老师,激发学生对数学学习的热情和学生的内驱力是教师的艺术所在。学生将自己的学习成果展示出来与大家分享,在交流过程中潜移默化的增强了学生的自信心,达到让学生不仅会写而且会说,学会分析问题解决问题。教师把自身的角色转换到听众的位置并适时加以点拨引导,形成一种师生平等、共同进步的和谐局面。

[师生活动]教师:根据学生板演内容,学生有序讲解。

学生:·······。

教师:问题1:口述互斥事件、对立事件、基本事件的概念,并说明三。

者的关系?

学生:······。

教师:问题2:此问题可以从反面这个角度考虑吗,有怎样的效果呢?

学生:······。

教师:问题3:比较发现设置的两个问题,给同学哪些启示?

学生:······。

教师:问题4:变题介绍将“4只红球,4只白球中随机取出3只球”,

给出的下列事件是对立事件的有哪些?

学生:······。

[设计意图]教学内容的深度应该逐层推进,注意将学生思维提高到一定的高度,从而达到智慧火花的碰撞。教师能够善于捕捉学生的闪光点,提高学生学习的热情和动力,使学生体验到成功的愉悦感,变“要我学”为“我要学”的主动学习。

[师生活动]教师:问题1:迅速完成巩固案的强化练习,总结课堂所学知识点?

学生:······。

教师:问题2:解答概率习题的规范?

学生:······。

[学情预设]既完成预学案上习题之后,教师发放巩固案供学生解答,主要问题预测如下:

(1)矫正反馈中练习题对互斥事件和对立事件知识点的强化.

(2)学生对概率解答题的解答规范有所欠缺.

[设计意图]经过习题演练过后,必须形成一定的思想方法,这样才能将数学学活,

知识的升华过程所能达到的高度因人而异,但数学素养的提高可以通过交流互相弥补。通过学生的总结,不仅培养学生的归纳总结的能力和语言表达能力,而且在师生交流过程中各取所长,达到“青出于蓝胜于蓝”的境界。

[师生活动]教师:问题1:变题中,分类的情况有哪些?

学生:,······。

教师:.

教师:问题2:出现“至多”、“至少”字眼时,常常需要逆向思维?

学生:,······。

(1)学生对问题分类过多时,需要细心思考,要求“不重复,不遗漏”的原则;。

(2)学生解决问题时习惯正面解决,对逆向思维的把握不准。

[设计意图]数学知识的内化是需要一个过程,是经过学生自身的磨合才能得到认同的,经过一些有针对性的练习能够及时巩固,达到预期的效果.

[作业布置]1.巩固案必做题。

高二数学教学计划的重要性【第二篇】

1、深入推进和贯彻“二期课改”的精神,以新的教育思想和课程理念实施,以学生发展为本,以培养学生创新精神和实践能力为重点的素质教育,探索有效教学的.新模式。

2、针对近年来中考命题的变化和趋势进行研究,收集试卷,精编习题,建立题库,努力把握中考方向,积极探索高效复习途径,力求达到减负加压增效。

9月~10月:

一元二次方程的应用。

11月~12月:

相似形。

20xx年1月:

期终考试。

《一课一练》、《周周练》。

10月下旬期中考试,1月上旬期终考试。

高二数学教学计划的重要性【第三篇】

(1)经过分析问题的方法的教学、经过不等式的一题多解、多题一解、不等式的一题多证,培养学生的学习的兴趣。

(2)提供生活背景,使学生体验到不等式、直线、圆、圆锥曲线就在身边,培养学数学用数学的意识。

(3)在探究不等式的性质、圆锥曲线的性质,体验获得数学规律的艰辛和乐趣,在分组研究合作学习中学会交流、相互评价,提高学生的合作意识。

(4)基于情意目标,调控教学流程,坚定学习信念和学习信心。

(5)还时空给学生、还课堂给学生、还探索和发现权给学生,给予学生自主探索与合作交流的机会,在发展他们思维能力的同时,发展他们的数学情感、学好数学的自信心和追求数学的科学精神。

(6)让学生体验发现挫折矛盾顿悟新的发现这一科学发现历程的幻妙多姿。

(二)能力要求。

1、培养学生记忆能力。

(1)在对不等式的性质、平均不等式及思维方法与逻辑模式的学习中,进一步培养记忆能力。做到记忆准确、持久,用时再现得迅速、正确。

(2)经过定义、命题的总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。

(3)经过揭示解析几何有关概念、公式和图形直观值见的对应关系,培养记忆能力。

2、培养学生的运算能力。

(1)经过解不等式及不等式组的训练,培养学生的运算能力。

(2)加强对概念、公式、法则的明确性和灵活性的教学,培养学生的运算能力。

(3)经过解析法的教学,提高学生是运算过程具有明晰性、合理性、简捷性能力。

(4)经过一题多解、一题多变培养正确、迅速与合理、灵活的运算能力,促使知识间的滲透和迁移。

(5)利用数形结合,另辟蹊径,提高学生运算能力。

3、培养学生的思维能力。

(1)经过含参不等式的求解,培养学生思维的周密性及思维的逻辑性。

(2)经过解析几何与不等式的一题多解、多题一解、经过不等式的一题多证,培养思维的灵活性和敏捷性,发展发散思维能力。

(3)经过不等式引伸、推广,培养学生的创造性思维。

(4)加强知识的横向联系,培养学生的数形结合的能力。

(5)经过解析几何的概念教学,培养学生的正向思维与逆向思维的能力。

(6)经过典型例题不同思路的分析,培养思维的灵活性,是学生掌握转化思想方法。

4、培养学生的观察能力。

(1)在比较鉴别中,提高观察的准确性和完整性。

(2)经过对个性特征的分析研究,提高观察的深刻性。

(三)知识要求。

1、掌握不等式的概念、性质及证明不等式的方法,不等式的解法;。

2、经过直线与圆的教学,使学生了解解析几何的基本思想,掌握直线方程的几种形式及位置关系,掌握简单线性规划问题,掌握曲线方程、圆的概念。

3、掌握椭圆、双曲线、抛物线的定义、方程、图形及性质。

1、不等式的主要内容是:不等式性质、不等式证明、不等式解法。不等式性质是基础,不等式证明是在其基础上进行的;不等式的解法是在这一基础上、依据不等式的性及同解变形来完成的。不等式在整个高中数学中是一个重要的工具,是培养运算能力、逻辑思维能力的强有力载体。

2、直线是最简单的几图形,是学习圆锥曲线、导数和微分等知识的的基础。,是直线方程的一个直接应用。主要内容有:直线方程的几种形式,线性规划的初步知识,两直线的位置关系,圆的方程;斜率是最重要的概念,斜率公式是最重要的公式,直线与圆是数形结合解析几何相互为用思想的载体。

3、圆锥曲线包括椭圆、双曲线、抛物线的定义,标准方程,简单几何性质,以及它们在实际中的一些运用。椭圆、双曲线、抛物线分别是满足某些条件的点的轨迹,由这些条件可以求出它们的方程,并经过分析标准方程研究它们的性质。

(一)重点。

1、不等式的证明、解法。

2、直线的斜率公式,直线方程的几种形式,两直线的位置关系,圆的方程。

3、椭圆、双曲线、抛物线的定义,标准方程,简单几何性质。

(二)难点。

1、含绝对值不等式的解法,不等式的证明。

2、到角公式,点到直线距离公式的推导,简单线性规划的问题的解法。

3、用坐标法研究几何问题,求曲线方程的一般方法。

1、教学中要传授知识与培育能力相结合,充分调动学生学习的主动性,培育学生的概括能力,是学生掌握数学基本方法、基本技能。

2、持之以恒与高三联系,切实面向高考,以五大数学思想为主线,有目的、有计划、有重点,避免面面俱到,减轻学生的学习负担。

3、加强教育教学研究,持之以恒学生主体性原则,持之以恒循序渐进原则,持之以恒启发性原则。研究并采用以发现式教学模式为主的教学方法,全面提高教学质量。

4、积极参加与组织集体备课,共同研究,努力提高授课质量。

5、持之以恒向同行听课,取人所长,补己之短。相互研究,共同进步。

6、持之以恒学法研讨,加强个别辅导(差生与优生),提高全体学生的整体数学水平,培育尖子学生。7、加强数学研究课的教学研究指导,培养学识的动手能力。

本学期共81课时。

1、不等式18课时。

2、直线与圆的方程25课时。

3、圆锥曲线20课时。

4、研究课18课时。

高二数学教学计划的重要性【第四篇】

(1)通过分析问题的方法的教学、通过不等式的一题多解、多题一解、不等式的一题多证,培养学生的学习的兴趣。

(2)提供生活背景,使学生体验到不等式、直线、圆、圆锥曲线就在身边,培养学数学用数学的意识。

(3)在探究不等式的性质、圆锥曲线的性质,体验获得数学规律的艰辛和乐趣,在分组研究合作学习中学会交流、相互评价,提高学生的合作意识。

(4)基于情意目标,调控教学流程,坚定学习信念和学习信心。

(二)能力要求。

1、培养学生记忆能力。

(1)在对不等式的性质、平均不等式及思维方法与逻辑模式的学习中,进一步培养记忆能力。做到记忆准确、持久,用时再现得迅速、正确。

(2)通过定义、命题的总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。(3)通过揭示解析几何有关概念、公式和图形直观值见的对应关系,培养记忆能力。

2、培养学生的运算能力。

(1)通过解不等式及不等式组的训练,培养学生的运算能力。

(2)加强对概念、公式、法则的明确性和灵活性的教学,培养学生的运算能力。

(3)通过解析法的教学,提高学生是运算过程具有明晰性、合理性、简捷性能力。

(4)通过一题多解、一题多变培养正确、迅速与合理、灵活的运算能力,促使知识间的滲透和迁移。

(5)利用数形结合,另辟蹊径,提高学生运算能力。

3、培养学生的思维能力。

(1)通过含参不等式的求解,培养学生思维的周密性及思维的逻辑性。

(2)通过解析几何与不等式的一题多解、多题一解、通过不等式的一题多证,培养思维的灵活性和敏捷性,发展发散思维能力。

(3)通过不等式引伸、推广,培养学生的创造性思维。

(4)加强知识的横向联系,培养学生的数形结合的能力。(5)通过解析几何的概念教学,培养学生的正向思维与逆向思维的能力。(6)通过典型例题不同思路的分析,培养思维的灵活性,是学生掌握转化思想方法。

4、培养学生的观察能力。

2、通过直线与圆的教学,使学生了解解析几何的基本思想,掌握直线方程的几种形式及位置关系,掌握简单线性规划问题,掌握曲线方程、圆的概念。

3、掌握椭圆、双曲线、抛物线的定义、方程、图形及性质。

三、

教材简要分析。

1、不等式的主要内容是:不等式性质、不等式证明、不等式解法。不等式性质是基础,不等式证明是在其基础上进行的;不等式的解法是在这一基础上、依据不等式的性及同解变形来完成的。不等式在整个高中数学中是一个重要的工具,是培养运算能力、逻辑思维能力的强有力载体。

2、直线是最简单的几图形,是学习圆锥曲线、导数和微分等知识的的基础。,是直线方程的一个直接应用。主要内容有:直线方程的几种形式,线性规划的初步知识,两直线的位置关系,圆的方程;斜率是最重要的概念,斜率公式是最重要的公式,直线与圆是数形结合解析几何相互为用思想的载体。

3、圆锥曲线包括椭圆、双曲线、抛物线的定义,标准方程,简单几何性质,以及它们在实际中的一些运用。椭圆、双曲线、抛物线分别是满足某些条件的点的轨迹,由这些条件可以求出它们的方程,并通过分析标准方程研究它们的性质。

四、重点与难点。

(一)重点。

1、不等式的证明、解法。

2、直线的斜率公式,直线方程的几种形式,两直线的位置关系,圆的方程。

3、椭圆、双曲线、抛物线的定义,标准方程,简单几何性质。

(二)难点1、含绝对值不等式的解法,不等式的证明。2、到角公式,点到直线距离公式的推导,简单线性规划的问题的解法。3、用坐标法研究几何问题,求曲线方程的一般方法。

五、教学措施。

1、教学中要传授知识与培育能力相结合,充分调动学生学习的主动性,培育学生的概括能力,是学生掌握数学基本方法、基本技能。

2、坚持与高三联系,切实面向高考,以五大数学思想为主线,有目的、有计划、有重点,避免面面俱到,减轻学生的学习负担。

3、加强教育教学研究,坚持学生主体性原则,坚持循序渐进原则,坚持启发性原则。研究并采用以发现式教学模式为主的教学方法,全面提高教学质量。

4、积极参加与组织集体备课,共同研究,努力提高授课质量。

5、坚持向同行听课,取人所长,补己之短。相互研究,共同进步。

6、坚持学法研讨,加强个别辅导(差生与优生),提高全体学生的整体数学水平,培育尖子学生。7、加强数学研究课的教学研究指导,培养学识的动手能力。

六、课时安排。

本学期共81课时1、不等式18课时。

2、直线与圆的方程25课时。

3、圆锥曲线20课时。

4、研究课18课时。

高二数学教学计划的重要性【第五篇】

1.加强自学。

(1)加强教材的学习。课本是一切教学的起点,也是考试的归宿。任何一个数学知识点都会从课本上找到类型题或者类似的题或者它们的影子。教学知识的全面性和系统性直接决定于教材能否被透彻理解和专题研究。也决定了学习课本的必要性。

(2)他山之石可以攻玉。由于生活环境、面对的对象、自身知识的局限等原因,自己的视野和起点有限,思考和解决问题的广度和深度也有限。所以多读一些教学参考书,吸收别人的经验,取长补短,对于增强教学的针对性和刺激性大有裨益。

强化课程改革意识。新课程改革全面展开,其精神和思想具有独特的时代性、前瞻性和科学性。因此,加强新课程改革知识的学习,理解新课程改革理念,增强新课程改革意识,是时代和发展的需要。因此,要积极参与新课改的培训,把握新课改的精髓,并应用于实践。这样才能让我们的知识代谢。

认真参与小组备课。珍惜每周一次的集体备课,充分利用这次集体备课的机会,向同龄人学习自己的不足或不擅长,积极落实小组内的各项安排,落实课时要求。

增强听课意识。根据学校的要求,积极参与新课改年级的课堂听力活动,听取老师的意见,发现亮点,记录亮点,积累亮点,点亮亮点。

2.把握课堂教学主战场,激发师生学习数学的积极性。

(1)加强新课情景的创设,激发学生的学习热情。每一节新课的开发都有其现实意义、价值和趣味性。充分挖掘这些知识可以起到很好的启动作用。

利用自习课的时间,找到需要帮助的同学进行辅导。如果你不会背公式,掌握公式,交作业,就会被勒令补课。

4.做好作业和考试反馈。

学生认真完成作业和试卷,教师批改,总结共性问题,发现个性问题,给予有针对性的反馈,及时消除困惑。

5.规范回答,养成良好习惯。

现在学生的数学答案顺序不清,逻辑混乱,因果颠倒,这不是扎实的基础,也是思维上的缺陷。因此,在现阶段,有助于培养学生良好的数学思维,避免高考失分和未来生活的凌乱。

6.培养学生对数学的兴趣,普及数学价值规律的应用。

兴趣是最好的老师。数学难,很烦。哪里难,哪里烦?找到原因,对症下药,通过课堂移植有趣的中外数学知识,让学生认识到数学的价值,通过多媒体降低数学思维的难度,都是提高学生兴趣的好方法。

高二数学教学计划的重要性【第六篇】

按照--年山东省高考数学(文科)考纲的要求,及时调整教学计划,认真抓好学生学习的落实,努力使学生的学成为有效劳动。精心备课,精心辅导,重点抓住目标生不放松,努力使目标生的数学成绩成为有效,积极沟通交流,提高自己的授课水平,同时,认真研究《数学学科课程标准》,学习新课程,应用新课程。

三、具体措施。

本学期,我主要从以下几个方面抓好教学:

1、注重学案导学,编好用好学案。注重研究老师如何讲为注重研究学生如何学。

2、尝试分层次作业,尤其是加餐作业,提高优等生的学习成绩。

3、抓好学生作业的落实,不定期检查学生的集锦本、练习本。

4、组织好单元过关,搞好试卷讲评。

5、积极做好目标学生的思想交流,情感沟通。

高二数学教学计划的重要性【第七篇】

根据湖北省的新课改教学实施指导意见,结合我们学校的实际教学情况,发挥备课组的集体力量,全力以赴的完成本学期的教学任务。同时加强对新课改理念的学习,相互协作,积极面对新课改的要求。

认真落实组里每位老师的课堂常规教学任务,努力加强老师的课外教学科研工作;积极学习新课改的理论知识,认真研究新教材的教法,做一个教学科研全方位的教师;同时发挥备课组全体成员的集体力量,积极研讨新教材的教学内容,全力提升高二年级的数学水平,缩小和其它学校的差距。

(1)落实好组里每位老师的两节公开课的任务,按照先议教案,再听课堂,最后评价的.程序严格落实到位。

(2)充分利用每个星期二下午的集体备课时间,商讨教学中存在的问题,探究新教材的教法。同时争取机会出去学习教改名校的数学学科课改教学的经验。

(3)做好每一次阶段性的考试工作,考前认真准备,阅卷客观公正,客观评价教学质量。

(4)分班落实数学学科的培优补差工作,尤其是文科班数学的提升。

(5)准备参加5月份的全国高中数学联赛的活动,积极安排年轻老师参加数学教学竞赛工作。

(1)2,3月份,文科完成选修1—1和选修3—1,理科完成选修2—1和3—1的教学任务,建议把选修3—1的《数学史选讲》参插讲。

(2)4月份,理科完成选修2—2,文科完成选修4—5。

(3)5月份,理科完成选修4—1,文科完成选修4—5。

(4)6月份,理科完成选修4—4,文科开始期末考试的复习。

说明:根据——省新课程教学实施指导意见,本学期理科完成选修2—1和2—2的内容,文科完成选修1—2和1—1的教学内容,但是我们还是打算把选修3—1,4—5的内容都上完,为高三复习做好准备,从时间上看,文科的教学时间是充足的,但是理科的教学时间比较紧,希望各位老师合理安排好教学时间,确实落实好每章每节的教学任务。

高二数学教学计划的重要性【第八篇】

一、学情分析:

学生学习情况良好,但学生自觉性差,自我控制能力弱,因此在教学中需时时提醒学生,培养其自觉性。学生存在的最大问题是计算能力太差,学生不喜欢去算题,嫌麻烦,只注重思路,所学知识浮于表面,不愿意深究。因此在以后的教学中,重点在于培养学生的计算能力,同时要进一步提高其思维能力。同时,由于高中教材与初中教材衔接力度不够,需在新授时适机补充一些内容。因此时间上可能仍然吃紧。同时,其底子薄弱,因此在教学时只能注重基础再基础,争取每一堂课落实一个知识点,掌握一个知识点。

二、教法分析:

1、在“三五五”教学模式下,改善师生之间的关系,提高亲和力,以生动活泼的呈现方式,激发兴趣和美感,引发学习激情。

2、选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生“看个究竟”的冲动,以达到培养其兴趣的目的。

3、通过“观察”,“思考”,“探究”等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。

4、在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。

三、具体教学要求:

1、了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用;了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理;了解合情推理和演绎推理之间的联系和差异。

2、了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点;了解间接证明的一种基本方法——反证法;了解反证法的思考过程、特点。

3、(理)了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题。

4、理解复数相等的充要条件;了解复数的代数表示法及其几何意义;会进行复数代数形式的四则运算;了解复数代数形式的加、减运算的几何意义。

5、(理)理解分类加法计数原理和分类乘法计数原理;会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题;理解排列、组合的概念;能利用计数原理推导排列数公式、组合数公式,能解决简单的实际问题;能用计数原理证明二项式定理,会用二项式定理解决与二项展开式有关的简单问题。

6、(理)理解取有限个值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性;理解超几何分布及其导出过程,并能进行简单的应用;了解条件概率和两个事件相互独立的概念,理解n次独立重复试验的模型及二项分布,并能解决一些简单的实际问题;理解取有限个值的离散型随机变量均值、方差的概念,能计算简单离散型随机变量的均值、方差,并能解决一些实际问题;利用实际问题的直方图,了解正态分布曲线的特点及曲线所表示的意义。

7、了解下列一些常见的统计方法,并能应用这些方法解决一些实际问题:了解独立性检验(只要求2×2列联表)的基本思想、方法及其简单应用;了解假设检验的基本思想、方法及其简单应用;了解聚类分析的基本思想、方法及其简单应用;了解回归的基本思想、方法及其简单应用。

8、了解程序框图;了解工序流程图(即统筹图);能绘制简单实际问题的流程图,了解流程图在解决实际问题中的作用;了解结构图;会运用结构图梳理已学过的知识、整理收集到的资料信息。

四、教学措施:

1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。

2、注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。

3、加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。

4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。

5、自始至终贯彻教学四环节,针对不同的教材内容选择不同教法。

6、重视数学应用意识及应用能力的培养。

做题之后加强反思,做到知识成片,问题成串。日久天长,构建起一个内容与方法的科学的网络系统。俗话说:“有钱难买回头看”。一般说做的题太少,很多熟能生巧的问题就会无从谈起。因此,应该适当地多做题。但是,只顾钻入题海,堆积题目,在考试中一般也是难有作为的。所以要把自己学到的知识合理地系统地组织起来,要总结反思,这样高中数学水平才能长进。

积累高中数学资料随时整理,要注意积累复习资料。把课堂笔记,练习,区单元测验,各种试卷,都分门别类按时间顺序整理好。每读一次,就在上面标记出自己下次阅读时的重点内容。这样,数学复习资料才能越读越精,一目了然。

配合老师主动学习,高一新生的学习主动性太差是一个普遍存在的问题。小学生,常常是完成了作业就可以尽情地欢乐。初中生基本上也是如此,听话的孩子就能学习好。高中则不然,作业虽多,但是只知做作业是绝对不够;老师的话也不少,但是谁该干些什么了,老师并不一一具体指明。因此,高中新生必须提高自己学习数学的主动性。准备向将来的大学生的学习方法过渡。

合理规划步步为营,高中的学习是非常紧张的。每个学生都要投入自己的几乎全部的精力。要想能迅速进步,就要给自己制定一个较长远的切实可行的数学学习目标和计划,例如第一学期的期末,自己计划达到班级的平均分数,第一学年,达到年级的前三分之一,如此等等。此外,还要给自己制定学习计划,详细地安排好自己的零星时间,并及时作出合理的微量调整。

高二数学教学计划的重要性【第九篇】

(2)通过对“更相减损之术”及“割圆术”的学习,更好的理解将要解决的问题“算法化”

的思维方法,并注意理解推导“割圆术”的操作步骤。

(1)改变解决问题的思路,要将抽象的数学思维转变为具体的步骤化的思维方法,提高逻。

辑思维能力;

(2)学会借助实例分析,探究数学问题。

(2)体会中国古代数学对世界数学发展的贡献,增强爱国主义情怀。

重点:了解“更相减损之术”及“割圆术”的算法。

难点:体会算法案例中蕴含的算法思想,利用它解决具体问题。

通过典型实例,使学生经历算法设计的全过程,在解决具体问题的过程中学习一些基本逻辑。

结构,学会有条理地思考问题、表达算法,并能将解决问题的过程整理成程序框图。

教学。

环节教学内容师生互动设计意图。

创设情境。

人们在长期的生活,生产和劳动过程中,创造了整数,分数,小数,正负数及其计算,以及无限逼近任一实数的方法,在代数学,几何学方面,我国在宋,元之前也都处于世界的前列。我们在小学,中学学到的算术,代数,从记数到多元一次联立方程的求根方法,都是我国古代数学家最先创造的。更为重要的是我国古代数学的发展有着自己鲜明的特色,也就是“寓理于算”,即把解决的问题“算法化”。本章的内容是算法,特别是在中国古代也有着很多算法案例,我们来看一下并且进一步体会“算法”的概念。

教师启发学生回忆小学初中时所学算术代数知识,共同创设情景,引入新课。

通过对以往所学数学知识的回顾,使学生理清知识脉络,并且向学生指明,我国古代数学的发展“寓理于算”,不同于西方数学,在今天看仍然有很大的优越性,体会中国古代数学对世界数学发展的贡献,增强爱国主义情怀。

学生通常会用辗转相除法求两个正整数的最大公约数:

例1:求78和36的最大公约数。

(1)利用辗转相除法。

步骤:

计算出7836的余数6,再将前面的除数36作为新的被除数,366=6,余数为0,则此时的除数即为78和36的最大公约数。

理论依据:,得与有相同的公约数。

(2)更相减损之术。

指导阅读课本p——p,总结步骤。

步骤:

即,理论依据:由,得与有相同的公约数。

算法:输入两个正数;

如果,则执行,否则转到;

将的值赋予;

若,则把赋予,把赋予,否则把赋予,重新执行;

输出最大公约数。

程序:

a=input(“a=”)。

b=input(“b=”)。

whileab。

ifa=b。

a=a—b;

else。

b=b—a。

end。

end。

print(%io(2),a,b)。

学生阅读课本内容,分析研究,独立的解决问题。

教师巡视,加强对学生的个别指导。

由学生回答求最大公约数的两种方法,简要说明其步骤,并能说出其理论依据。

由学生写出更相减损法和辗转相除法的算法,并编出简单程序。

教师将两种算法同时显示在屏幕上,以方便学生对比。

教师将程序显示于屏幕上,使学生加以了解。数学教学要有学生根据自己的经验,用自己的思维方式把要学的知识重新创造出来。这种再创造积累和发展到一定程度,就有可能发生质的飞跃。在教学中应创造自主探索与合作交流的学习环境,让学生有充分的时间和空间去观察,分析,动手实践,从而主动发现和创造所学的数学知识。

求两个正整数的最大公约数是本节课的一个重点,用学生非常熟悉的问题为载体来讲解算法的有关知识,,强调了提供典型实例,使学生经历算法设计的全过程,在解决具体问题的过程中学习一些基本逻辑结构,学会有条理地思考问题、表达算法,并能将解决问题的过程整理成程序框图。为了能在计算机上实现,还适当展示了将自然语言或程序框图翻译成计算机语言的内容。总的来说,不追求形式上的严谨,通过案例引导学生理解相应内容所反映的数学思想与数学方法。

高二数学教学计划的重要性【第十篇】

教学中要从学生的认识水平和实际能力出发,及时纠正不合理学习方法,研究学生的心理特征,做好高二第一学期与第二学期的衔接工作。注重培养学生良好的.数学思维方法,良好的学习态度和学习习惯。具体措施如下:

(1)注意研究学生,做好高二第一学期与第二学期的衔接工作。

(2)集中精力打好基础,分项突破难点.所列基础知识依据新课程标准设计,着眼于基础知识与重点内容,要充分重视基础知识、基本技能、基本方法的教学,为进一步的学习打好坚实的基础,切勿忙于过早的拔高,讲难题。同时应放眼高中教学全局,注意高考命题中的知识要求,能力要求及新趋势,这样才能统筹安排,循序渐进。

(3)培养学生解答考题的能力,通过例题,从形式和内容两方面对所学知识进行能力方面的分析,引导学生了解数学需要哪些能力要求。

(5)抓好尖子生与后进生的辅导工作。

(6)注意运用现代化教学手段辅助数学教学;注意运用投影仪、电脑软件等现代化教学手段辅助教学,提高课堂效率,激发学生学习兴趣。

第1周开学报名。

第2周选修变化率与导数。

第3周导数的计算导数在研究函数中的应用。

第4周生活中的优化问题举例定积分的概念。

第5周微积分基本定理定积分的简单应用。

第6周第一章复习合情推理与演绎逻辑。

第7周直接证明与间接证明数学归纳法。

第8周第二章复习数系的扩充和复数的概念。

第9周复数代数形式的四则运算第三章复习。

第10周期中复习。

第11周期中考试。

第12周选修分类加法计数原理与分步乘法计数原理排列与组合。

第13周二项式定理第一章复习。

第14周离散型随机变量及其分布列二项分布及其应用。

第15周离散型随机变量的均值与方差正态分布。

第16周第二章复习。

第17周回归分析的基本思想及其初步应用。

第18周独立性检验的基本思想及其初步应用。

第19周第三章复习。

第20周期末总复习。

第21周期末考试。

70 2293623
");